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ABSTRACT
To improve code coverage and flip complex program branches, hy-
brid fuzzers couple fuzzing with concolic execution. Despite its
benefits, this strategy inherits the inherent slowness and memory
bloat of concolic execution, due to path explosion and constraint
solving. While path explosion has received much attention, con-
straint bloat (having to solve complex and unnecessary constraints)
is much less studied.

In this paper, we present LeanSym (LSym), an efficient hybrid
fuzzer. LSym focuses on optimizing the core concolic component
of hybrid fuzzing by conservatively eliminating constraint bloat
without sacrificing concolic execution soundness. The key idea
is to partially symbolize the input and the program in order to
remove unnecessary constraints accumulated during execution and
significantly speed up the fuzzing process. In particular, we use
taint analysis to identify the bytes that may influence the branches
that we want to flip and symbolize only those bytes to minimize
the constraints to collect. Furthermore, we eliminate non-trivial
constraints introduced by environment modelling for system I/O.
This is done by targeting the concolic analysis solely to library
function-level tracing.

We show this simple approach is effective and can be imple-
mented in a modular fashion on top of off-the-shelf binary anal-
ysis tools. In particular, with only 1k LOC to implement simple
branch/seed selection policies for hybrid fuzzing on top of unmod-
ified Triton, libdft, and AFL, LSym outperforms state-of-the-art
hybrid fuzzers with much less memory bloat, including those with
advanced branch/seed selection policies or heavily optimized con-
colic execution engines such as QSYM and derivatives. On aver-
age, LSym outperforms QSYM by 7.61% in coverage, while finding
bugs 4.79x faster in 18 applications of Google Fuzzer Test Suite.
In real-world application testing, LSym reported 17 new bugs in 5
applications.
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1 INTRODUCTION
To improve code coverage, state-of-the-art hybrid fuzzers combine
a fuzzing component with a concolic (symbolic+concrete) execu-
tion component. The hybrid fuzzer relies on the former to still
generate the bulk of the inputs, but falls back to the latter to gen-
erate inputs that would be hard to otherwise consider due to the
complex constraints that the input bytes must satisfy. In program
terms, these constraints correspond to the branch conditions that
govern which values in the input lead to new code coverage. The
harder the constraints to be solved for a given target branch, the
more difficult it is for a fuzzer to generate the right inputs using
(semi-random) mutation. Nonetheless, solving complex constraints
is possible with concolic execution. As a result, hybrid fuzzers rely
on the speed of fuzzing for the simple cases and the slower, but
more powerful, concolic execution for the difficult ones [19, 41, 45].

In theory, concolic execution can greatly improve the fuzzing
process and perform sound and complete analysis, by simultane-
ously exploring multiple paths in the target program. However, in
practice, concolic execution scales poorly to non-trivial applica-
tions and test cases, mainly due to path explosion and constraint
bloat (having to solve many complicated and unnecessary con-
straints) [44]. While path explosion has been extensively studied in
the past, this paper focuses on reducing the large number of con-
straints that overwhelm the solver’s computational and memory
capacities—a problem we refer to as constraint bloat.

The main, and unfortunately limited, answer to the scalability
problems in symbolic/concolic execution has been to reduce the
number of paths (and hence also constraints) through different vari-
ants of optimized concolic execution [12, 17, 18]. In particular, prior
research has explored different ways to minimize the parts of the
program to execute symbolically, by means of type dependence [4],
neural networks [39], slicing and chopping [42], etc. However, after
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deciding which part of the program is symbolic and which con-
crete, existing engines typically collect all the constraints during
concolic execution for each target branch by making the entire
input symbolic. However, in practice, many of the constraints thus
accumulated are not relevant for a given target branch at all [20].

An alternative answer to deal with constraint bloat might be to
write a tailored concolic execution engine for hybrid fuzzing from
scratch, with the aim of symbolizing only the relevant instructions
in the program. This is the approach explored in QSYM [45], where
a custom and efficient concolic execution engine implemented in
some 16,000 lines of code supports a hybrid fuzzer, using a depen-
dency chain to determine the instructions that are relevant for
each target branch and therefore should be executed symbolically.
Although the optimized concolic component improves fuzzing per-
formance significantly, the input is still fully symbolized, which
may result in path explosion and constraint bloat. To work around
these issues, QSYM uses a timeout to switch to an optimized mode
which drops all the constraints and only attempts to solve those
directly related to a given branch. Unfortunately, this strategy is
unsound and may result in invalid inputs that do not help the fuzzer
make forward progress.

In this paper, we present LeanSym (LSym), a new and efficient
hybrid fuzzer that outperforms even tailored solutions with much
less memory bloat and using off-the-shelf binary analysis tools. The
key idea is to use partial symbolization (symbolizing only those
parts of the inputs and program that are relevant for the target
branch) to aggressively eliminate constraint bloat, while preserving
the soundness of concolic execution. In particular, LSym removes
constraints accumulated during execution that have no bearing on
the target branch to speed up the fuzzing process significantly in
two ways. First, it eliminates non-trivial constraints introduced by
environment modeling for system I/O by targeting the symbolic
analysis solely to library function-level tracing. Second, it uses
dynamic taint analysis to identify the bytes that may influence the
branches that we want to flip and symbolize only those bytes to
minimize the constraints to collect.

We implemented LSymon top of unmodified Triton [38], libdft [3],
andAFL [46] in 1k LOC to implement simple andmodular branch/seed
selection policies for hybrid fuzzing. We evaluated LSym on various
benchmark datasets such as the Google Fuzzer Test Suite [2] as
well as 5 real-world applications and compared its performance
against state-of-the-art hybrid fuzzers, namely QSYM. On average,
LSym outperforms QSYM by 7.61% in coverage, while finding bugs
4.79x faster. LSym also found 17 new bugs in 5 applications with
the latest versions, while QSYM failed to find 9 of them.

Summarizing, we make the following contributions:

• We analyze the performance bottlenecks in concolic execu-
tion as used in hybrid fuzzers and identify constraint bloat
as one of the main problems (§ 2).

• We show that we can significantly reduce the bloat and
improve hybrid fuzzing performance by means of function-
level training (§ 4) and taint-assisted input symbolization
(§ 5). .

• Building on these insights, we implemented LSym, a hy-
brid fuzzer on top of common off-the-shelf tools (§ 6) that
outperforms highly optimized state-of-the-art solutions (§ 8)

To foster follow-up research, we will open source our LSym
prototype upon acceptance of the paper.

2 CONSTRAINT BLOAT IN CONCOLIC
EXECUTION

Though path explosion is a well known and studied issue in classi-
cal symbolic execution and concolic execution based approaches,
scalability still remains a challenge and constraint solving is possi-
bly the next biggest bottleneck [5]. Constraint solving is especially
expensive due to constraint bloat, which, in turn, has two main
causes. First, the concolic execution engines by themselves do not
really know what happens to the symbolic state when the program
interacts with the environment, for instance through system calls.
For this reason, today’s concolic execution engines come equipped
withmodels to emulate these effects on the symbolic state for every
possible interaction. Unfortunately, as we shall see, symbolization
at the system call level is complicated and quickly leads to the
accumulation of many (not very interesting) constraints. Second,
existing concolic execution engines apply (overly) wide symbol-
ization of inputs and instructions with an eye on (broad) program
exploration rather than flipping target branches.

2.1 Relevant branches
To highlight the problem, we use the example shown in Listing 1,
where the vulnerability in Line 24 is hidden inside a number of
complicated checks.

Listing 1: A bug in nested code. Branches marked ‘Rn ’ are
related to the bug in line 24. The ‘Un ’ branches are unrelated.

1
2 int main (int argc , char *argv []) {
3 char *file = argv [1];
4 char B[2000]; // buffer for input bytes (to be tainted)
5 FILE *fp = fopen(file , "r");
6 size_t fsize = ftell (fp); // get file size
7 int check = 0;
8 fread(B, fsize , 1, (FILE*)fp);
9 for (i = 0; i < (fsize -6); i++)
10 if ((B[i]+B[i+1]) < (B[i+3]+B[i+4]+B[i+5])) // R0
11 check ++;
12
13 if (check < 1) return -1;
14
15 if (B[18] + B[19] == ’b’) { // R1
16 ...
17 if (B[2] + B[4] == 'X') // U1
18 ...
19 if (B[15] + B[18] == ’U’) { // R2
20 ...
21 if (B[4] + B[8] == 'X') // U2
22 ...
23 if (B[15] + B[14] == ’g’) //R3
24 ... VULNERABLE CODE ...
25 else ... // R4
26 }
27 ...
28 }
29 return 0;
30 }

To trigger the vulnerability, the program should reach the true
edge of the branch R3, after satisfying three prior branch condi-
tions (R0, R1 and R2). Note that the other conditional statements
preceding R3 (U1 -- U2) are not important for the outcome of R3.
Specifically, a previously executed branch A is only relevant for a
later branch B, if B is control- or data-dependent on A.
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Listing 2: Constraints generated for the code in Listing 1 on
negating the branch R3.

1
2 (B[0]+B[1])-(B[3]+B[4]+B[5] < 0) &&
3 ...
4 B[18] + B[19] - 'b' = 0 && B[2] + B[4] - 'X' = 0 &&
5 B[15] + B[18] - 'U' = 0 && B[4] + B[8] - 'X' = 0 &&
6 B[15] + B[14] - 'g' = 0

To explore such code, concolic execution maintains both sym-
bolic and concrete states. Upon encountering a branch during exe-
cution, it will try to find a new path by solving the negation of the
branch together with all the constraints previously collected. In this
simple example, if an input reaches R3 (i.e. satisfies all the previous
constraints), but sets the branch outcome to false, it will try to
find an input that evaluates R3 to true. To do so, popular concolic
execution solutions such as KLEE, S2E, and Triton1 will generate
symbolic expressions similar to the ones shown in Listing 2, to be
solved by a constraint solver.

Clearly, many of the constraints are not relevant for triggering
the bug at all and satisfying themwith a constraint solver needlessly
consumes both time and memory.

2.2 Existing work on reducing symbolic code
Existing solutions attempt to symbolize only relevant statements
build on a technique known as chaining [16], a form of slicing
using program dependency graphs [21]. Specifically, by building
a dependency tree, solutions such as QSYM [45], DGSE [43], and
STIG [14] determine which statements in a program are relevant
for the current target branch.

QSYM [45], a state-of-the-art hybrid fuzzer optimizes the process
even further by dynamically switching between two modes. In
full mode, QSYM builds for each branch a full dependency tree
consisting of all relevant statements for that branch and tries to
solve (only) the corresponding constraints. However, in case full
mode takes too long (i.e., QSYM cannot solve the constraints within
a few seconds), it falls back to optimistic mode which uses taint
analysis to find which input bytes influence the target branch and
solves only that constraint. We noticed that Triton [38] supports a
similar mode, known as last-branch-only, although it does not make
use of taint analysis to prune the statements that are not relevant.

The code in Listing 1 shows that solutions that leverage de-
pendency trees to reduce constraints (such as QSYM and similar
systems), may still accumulate many (useless) constraints. In this
case, the loop even creates a chain of constraints so that each con-
straint ci+1 at loop iteration i + 1 is related to the constraint ci at
loop iteration i . As a result, we end up collecting all the constraint
in the code except for the ones related to U1 and U2. In optimistic
mode, QSYM does not use dependency relation and therefore, only
focuses on the last constraint B[15] + B[14] - ’g’= 0.

2.3 Challenges in containing constraint bloat
For small examples, off-the-shelf constraint solvers may well find a
solution still, but for real-world applications with large program
sizes and numerous paths, the constraints to flip a target branch
quickly become too complicated for the constraint solver to solve

1default mode

efficiently. In the remainder of this section, we revisit the two main
challenges in handling constraint bloat.

Challenge C1 Reduce constraint bloat due to excessive sym-
bolization by hooking at the level of system calls.

Concolic execution always starts with symbolizing the program
input. In the absence of source code, it is often not obvious which
exact function acts as the source of the tainted input. For this reason,
binary-only solutions typically symbolize input bytes by hooking
system calls for file operations, such as open(), read(), and mmap.
While convenient, system call hooking introduces additional con-
straints which in turn lead to additional overhead for the solver.

The main sources of these extra constraints are wrapper func-
tions such as the system call APIs in glibc that perform a variety
of operations before performing the actual system call. As an exam-
ple, consider the reading of a string of bytes from a file using the
fopen() and fread() functions from the glibc library that even-
tually execute the open() and read() system calls, respectively.

To get access to the target string from the input file, fopen()
needs to copy the file descriptor returned by the open() syscall to
the address of the I/O buffer that implements the FILE struct. Next,
fread() uses a pointer in this structure to track which offset in the
input file buffer should be accessed and copied into an intermediate
buffer. These are all complex operations. With symbolization at
the system call level, such intermediate operations increase both
the emulation time and the number of constraints. As the input
file grows in size, these additional mass of (not very interesting)
constraints influences the efficiency of concolic execution to certain
extent.

Challenge C2 Reduce constraint bloat due to whole-input
symbolization.

Current concolic execution solutions symbolize the entire input
and emulate all instructions that operate on these symbolized bytes.
As we saw in Listing 2, doing so results in many constraints that are
not relevant. As we saw earlier, advanced solutions (in QSYM and
similar systems) reduce constraint bloat by computing a precise
dependency chain, allowing them to emulate only the relevant in-
structions. For the example in Listing 1, QSYM in full mode would
keep all the constraints related to R0 - R3, but shed (only) those of
U1 and U2. In optimistic mode, QSYM’s fallback solution, it aban-
dons the soundness of symbolic execution altogether and tracks
only R3.

Both modes have problems. It is intuitively clear that optimisitic
mode often leads to invalid solutions. For instance, when solving
the constraint for R3 using bytes 15 and 14, it may pick a value
for byte 15 that interferes with R2 and cause the program to not
even reach R3. Clearly, a single constraint on the last branch is not
sufficient. Unfortunately, the complete dependency chain in full
mode also leads to problems—in the form of constraint bloat (and
its accompanying high memory overhead). Specifically, given an
input and the target branch R3 that the fuzzer needs to flip, the
relevant constraints are only those related to R2 and R3. Picking
the right values for bytes 14 and 15, such that they satisfy both
conditions is sufficient to flip the branch. In other words, using the
full dependency graph may vastly overshoot the minimum number
of constraints needed to flip the branch!
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Table 1: Constraints collected by different methods for the
code in Listing 1, for the target branch RB3.

time mem (MB) solving time constraints solved vars success
QSYM∗ 14s 538 10s +284ms 951 949 no
Triton∗ 28s 206 10s + 876ms 951 949 no
LSym 8s 57 1ms 9 2 yes
∗QSYM and Triton both had to fall back on optimistic/last-branch-only mode as neither
could solve the constraints otherwise, even in 20 minutes.

2.4 The cost of constraint bloat
In this section, we perform a preliminary evaluation of the effects
of constraint bloat to motivate the remainder of this work. As a first
example, consider Table 1, where the first two rows show results for
the trivial example of Listing 1 with QSYM and an optimized version
of Triton. Like QSYM, the Triton-solution drops to last-branch-only
mode if it fails to find a solution with full constraints within a
time-out period of ten seconds. Without the timeout, both QSYM
and Triton can not solve the target branch even in twenty minutes.
We then aborted these experiments, since spending this long on a
single branch makes these solutions impractical. The experiments
show that constraint bloat can easily becomes a bottleneck for
constraint solvers. Indeed, even for this simple example, the number
of constraints (almost one thousand) and the amount of memory
(hundreds of megabytes) are very high for both QSYM- and Triton-
based solutions, while neither of them even found an input to reach
the target code. In this paper, we show that we can do much better.
For instance, the last row shows that LSym reduces the number of
constraints by two orders of magnitude, and easily finds an input
that leads to the vulnerability in just 1ms of constraint solving.

While Listing 1 is a toy example, the problem of constraint bloat
also surfaces in real-world binaries, as shown in Table 2, where we
evaluated objdump-2.34 targeting one specific compare instruc-
tion using QSYM and the same optimized version of Triton, as
well as LSym. Again, we see that the amount of memory and the
number of constraints in the QSYM and Triton-based solutions
are high, and because of their complexity, they take a long time
to solve. Indeed, although our seed inputs hit the target branch
six times, in every single case the constraints were too complex
for Triton to solve within the time-out period. In other words, all
branches go to optimistic/last-branch-only mode for a “solution”
(that unfortunately often invalidates prior constraints). Similarly,
QSYM resorted to optimistic mode in half of the cases, even though
QSYM’s concolic execution engine is much more efficient than Tri-
ton’s. The bottom row in the table again shows that we can do
better with only a fraction of the constraints, less memory over-
head and a much lower solving time. Moreover, the reduction in
constraints means that they could all be solved in less than a second
without the need for the fallback mode. This is important since
optimistic mode has strong bearings on the code that we cover. For
instance, Triton generated even less coverage than the original seed
input. The main reason is that optimistic/last-branch-only modes
ignore previous data dependencies so that the solutions more often
than not invalidate previous constraints. A quick investigation of
newly covered paths via optimistic mode on applications in Google
Fuzzer Test Suite confirms that many of them are error paths. In

other words, the more inputs we generate optimistically, the less
(meaningful) coverage we may get (see Section 8.1).

Table 2: Constraints collected by different methods for a sin-
gle branch in objdump-2.34.

mem (MB) solving time∗ constraints solved vars coverage
original 1384
QSYM 662 10s+0.491s 407 38 1582
Triton 673 10s+13ms 371 8 1225
LSym 206 0.289s 33 8 1592
∗for the seed hitting the target branch last

3 LEANSYM
LSym addresses the issue of constraint bloat by augmenting concolic
execution with two techniques.

Overcoming C1: Function level tracing. Instead of symbol-
izing at the syscall level, LSym performs symbolization at function
level (i.e. it delays hooking until the I/O related execution reaches
a library function). For instance, in the example of Listing 1, in-
stead of hooking syscalls open() and read(), we start tracing from
fopen(), fread() from libc. The similar approach has also been
used in prior work in symbolic execution (e.g., by creating efficient
memory models and concretely applying system and application
arguments, e.g. S2E[12], Mayhem[8], angr [40] and KLEE [6] for
external library wrapper) and unit-level testing work [36]. It should,
however, be noted that while source-based solutions, like KLEE,
also apply library wrappers, their motivation is to model the ex-
ternal library functions to continue with the execution. We, on
the other hand, apply similar strategy for constraint debloating.
As an addition, we simplify the automatic detection of functions
calling I/O syscalls as such functions can be custom functions in the
application rather than standard libc APIs. In Section 4, we explain
how we identify the appropriate functions to start tracing.

OvercomingC2: Taint-assisted partial symbolization. LSym
exploits the fact that concolic execution involves a concrete input
and uses it to also compute the (dynamic) dataflow. Specifically,
rather than constructing a full dataflow-based dependency chain,
LSym uses dynamic taint analysis (DTA) to identify the tainted (in-
put) bytes that affect each statement. For each target branch A and
the corresponding set TA of input bytes affecting it, it symbolically
executes only those statements that are similarly affected by bytes
in TA. We achieve this by symbolizing (only) the input bytes in TA
and perform concolic execution as usual, without touching other
bytes of the input.

Thus, for the example in Listing 1 we would not change the
behavior of branch R1 and focus instead on R2 and R3, as well as
the constraints generated within the loop that involve those same
tainted bytes (14 and 15).

The bottom row of Table 1 shows that, for this example, doing
so reduces the number of constraints by two orders of magnitude
and easily finds an input that leads to the vulnerability. In Section 8,
we evaluate LSym on real-world applications.

Fig. 1 illustrates LSym’s high-level design. It consists of four
main components: (A) the main fuzzer (e.g., AFL [46]), (B) the
taint analysis engine (e.g., libdft [25]), (C) the branch selector, and
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(D) a concolic execution engine (e.g., Triton [38]). The main fuzzer
maintains a queue of inputs from which we randomly select one
and run it under taint analysis to determine the tainted bytes for
every branch. Next, the branch selection module selects branches
to flip (see Section 6), while the concolic execution engine uses the
taint information and function level tracing to generate a minimal
set of constraints corresponding to the selected branches. Finally, a
SAT solver returns a solution satisfying these constraints (if any),
which is then used to generate new inputs.

Figure 1: Architectural Overview of LSym.

In the next two sections, we describe function-level symboliza-
tion and taint-assisted partial symbolization in detail.

4 FUNCTION-LEVEL TRACING
Library function wrappers for system calls can introduce additional
and unnecessary constraints while performing concolic execution.
To address this problem, we propose a simple function-level tracing
and symbolization design as an alternative to the traditional syscall-
level approach. Our approach is inspired from source-code based
solutions, like KLEE [6], that provide wrappers for external library
functions and works directly on executables in automatic manner.
For our purpose, we only focus on file processing syscalls and library
functions. Achieving this goal requires two steps: (1) determining
which file processing library functions to hook, and (2) summarizing
such functions to perform symbolization.

From functions to syscalls. Without access to source code,
our goal is to track syscalls like open(), read(), etc. and then
determine which library functions wrapping these system calls we
need to symbolize. For this purpose, we rely on the Intel PIN [30]’s
dynamic binary instrumentation (DBI) framework.

We hook syscalls by using PIN’s dynamic instrumentation. Next,
we use PIN’s routine tracing instrumentation to generate a dynamic
callgraph where the deepest node (leaf node) contains a call to
a syscall and upper most node corresponds to a known library
function. In our current implementation, we focus on file processing
syscalls and corresponding library functions from libc. Before
starting the main analysis task, we run the application on given seed
inputs to determine which function summaries are required for the

application. For instance, when we run our pintool on the example
in Listing 1, we find fopen() and fread() call the relevant syscalls
and are thus selected for function-level symbolization. We also
considered alternative designs, such as manual annotations at the
library interface level (but this approach may miss relevant library
functions across implementations) and static callgraph analysis (but
this approach may be unnecessarily conservative for the simple task
at hand), but discarded them in favor of a more practical approach.

Function summaries.After determining the target library func-
tions, we provide wrappers that summarize such functions and
symbolize the relevant data by doing a manual analysis. This is
similar to the approach adopted in angr [40] for providing python
wrappers for library functions. However, a distinction should be
made in that angr provides summaries of known library functions
(called as SimProcedures) to deal with the problem of path explo-
sion, which we have not implemented in our current prototype. We
believe incorporating such features will further enhance constraint
debloating. Also, unlike angr, we do not model the whole effect
of a syscall on the memory, but rather only focus on the taintflow
propagation. For most of the functions, this is as simple as grabbing
the address of a file buffer from argument registers and symbolizing
all the bytes in the buffer. For instance, the fread() wrapper can,
in principle, orderly symbolize the bytes of the read buffer upon
library function return. Nonetheless, syscalls such as rewind(),
fstat(), lseek(), and fseek() may change the current read off-
set and result in a non-linear input-to-buffer mapping.

To address this problem, we track information in the file structure
stored inmemory. In particular, we target variables (e.g., _IO_read_ptr)
in the file structure to calculate the right offset at every read opera-
tion. In the wrapper, we maintain a map between each symbolic
byte in the read buffer and the original input byte offset. This strat-
egy allows us to map each byte of the input to each byte read by a
given libray call after collecting and solving the branch constraints.

Thanks to this simple summarization strategy, we can aggres-
sively prune all the unnecessary constraints normally collected
inside complex library function implementations like fread() by
existing concolic execution tools.

5 TAINT-ASSISTED PARTIAL
SYMBOLIZATION

In this section, we describe the main LSym component, namely
taint-assisted partial symbolization. As we observed earlier, the
efficiency of concolic execution depends on two factors: the time to
emulate instructions and collect constraints, and the time to solve
the collected constraints for a given branch that we want to flip.
While optimizations are possible [16, 45], it is difficult to minimize
such times if we fully symbolize the input and need to collect the
many resulting constraints during concolic execution.

LSym’s key intuition is that, in a coverage-oriented hybrid fuzzing
scenario, we are only interested in targeting conditional branches
that depend on some bytes of the input. For example, as shown
in Listing 1, for the branch at line 23 to be negated and reach the
vulnerable code R3, we only need to focus on offsets 14 and 15 in
the input affecting the branch (assuming previous constraints are
satisfied). As a result, full input symbolization is unnecessary (and,
in fact, detrimental due to constraint bloat).
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Building on this intuition, LSym only symbolizes the input bytes
that affect the target branches, pruning many complex and unneces-
sary constraints while retaining the same context (and soundness)
as full symbolization. For this purpose, LSym relies on byte-granular
dynamic taint analysis (DTA) to determine which input bytes affect
which target branches in the program. With this information, LSym
can symbolize only the relevant (or tainting) input bytes for partial
and efficient symbolization.

To gather the required taint information, LSym simply runs
the program with the given input using DTA. LSym instructs the
DTA engine to use the entire (file) input as taint source and all the
compare (i.e., cmp) instructions as taint sinks. With byte-granular
taint propagation performed by theDTA engine, this strategy allows
us to record tainted input byte offsets and operand values for each
cmp instruction controlling a branch.

In the next step, LSym selects the target cmp instructions and
symbolizes only the input bytes tainting the operands of such in-
structions. For example, in Listing 1, say we want to exclusively
target (and flip) the branch at line 23. To this end, LSym collects
taint information for the corresponding cmp instruction and reports
bytes 14 and 15 as the only controlling input bytes.

In the final step, LSym symbolizes the input bytes reported by
DTA and collects constraints during concolic execution. Due to
taint-assisted partial symbolization, the latter only needs to emulate
instructions operating on the relevant symbolic data. When the
execution reaches the target branch instruction, we have gathered
all the necessary constraints to negate the branch. In the example,
the condition is negated as B[15] + B[14] - ’g’ == 0.

At that point, the collected constraints are given to a constraint
solver, which calculates the values of the relevant input bytes to
guide the execution on the flipped edge of the target branch. In
the example, the solver provides the following solution: B[14] ==
0x33 && B[15] == 0x34. LSym uses such solution to replace the
original input bytes with the provided values and generate a new
test case.

Our DTA implementation does not consider implicit (indirect)
taintflow when propagating taint2. As noted by Cavallaro et al. [7],
capturing implicit flows result in taint explosion, thus more false
positives, while not considering implicit flows introduces missing
taintflows. Due to the later side-effect, the precision of constraints
is negatively impacted. For us, this problem results in losing rele-
vant constraints thereby making constraint solving incorrect. We,
however, observe that for fuzzing on real-world applications, the
effect of implicit flows is not very adverse (see Section 8.3.1 for
empirical results).

6 HYBRID FUZZING POLICIES
Building on lean concolic execution for hybrid fuzzing, LSym can
afford simple fuzzing policies to implement efficient and practical
fuzzing. At the architectural level, we follow the standard approach
used by prior hybrid fuzzing solutions such as QSYM. That is, we use
AFL [46] as the main fuzzing engine with two instances (master and
worker) to synchronize with the inputs generated by our concolic
2Implicit flow arises when a variable is assigned within an if-then-else statement whose
condition involves a sensitive (tainted) variable, e.g., if(y=1) then x:= 1;else x:=
0;endif. Clearly, the value of x is dependent ony , even though there is no assignment
of the latter to the former.

execution component.Within this architecture, LSym relies on basic
seed selection, branch selection, and branch scheduling policies
to isolate the benefits of constraint debloating and improve the
comparability of our results.

Seed selection. The seed selection policy dictates how LSym
selects test cases from the worker instance of AFL to perform con-
colic execution—feeding the descendant test cases back to AFL.
LSym can flexibly support different seed selection policies. For a
fair comparison against QSYM, the closest competing solution, we
adopt its same seed selection policies based on four metrics: cov-
erage (seed leading to new coverage), importance (original seed),
size (the smaller the seed size, the better), age (the younger the
seed, the better). Nonetheless, using more advanced seed selection
policies—such as those explored in recent work [10, 11, 47]—to
provide orthogonal improvements is possible.

Branch selection. The branch selection policy dictates how
LSym selects the branches to flip within each seed considered for
concolic execution. LSym can flexibly support different branch se-
lection policies. For example, Burnim and Sen observed that in
practice, a simple random branch selection strategy beats more so-
phisticated strategies, like CFG based or DFS [5]. However, in our
current implementation, similar to QSYM we select all the branches
in the execution trace of an input under consideration. Nonetheless,
using more advanced branch selection policies is possible and has
the potential to amplify the effectiveness of partial input symbol-
ization (the fewer the branches selected, the fewer the constraints
handled by concolic execution). We leave the exploration of such
large design space to future work.

Branch scheduling. The branch scheduling policy dictates how
LSym schedules the selected branches for concolic execution. A
naive policy would simply schedule all the target branches for par-
tial input symbolization in a single concolic execution run. However,
this policy may trivially re-introduce constraint bloat. In fact, in
the worst case, it might lead DTA to conclude we need to symbolize
the entire input, falling back to an inefficient full input symbol-
ization baseline. At the other extreme, scheduling one concolic
execution run for each branch would introduce unnecessary com-
putational redundancy (and overhead). Tominimize constraint bloat
and computational overhead, our current LSym prototype clusters
the branches controlled (i.e., tainted) by the same input bytes to-
gether and schedules each cluster in a single concolic execution
run. We found this policy to work well in practice and exploits the
full benefit of partial input symbolization.

7 IMPLEMENTATION
We implemented our LSym prototype in 1,126 lines of code (LOC)
overall. The concolic execution component is implemented in 641
LOC and based on the Triton [38] concolic execution engine. The
DTA tool is implemented in 371 LOC and based on the libdft64 [3]
DTA framework. The remaining 114 LOC are for the fuzzer runner.

Concolic execution. In theory, LSym can be implemented on
top of any existing concolic execution engine, such as S2E [12],
KLEE [6], angr [40], Triton [38], and QSYM [45]. We originally con-
sidered QSYM for comparability purposes, its support for program
binaries, and its efficient concolic emulation. However, QSYM’s
custom-optimized concolic execution engine implements several
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tightly coupled optimization techniques, making it difficult to ex-
tend, decouple the optimizations, and implement our modular LSym
design. As a result, we decided to implement LSym on top of the
less efficient but more flexible Triton engine.

Triton [38] is a dynamic binary analysis framework that provides
a concolic execution engine, AST representations, DTA, and a SMT
solver interface. Triton’s concolic execution engine is implemented
by using Intel PIN [30] API which also facilitates the integration of
our function-level/syscall-level profiling tools. Our concolic execu-
tion component is implemented on top of the Triton API to easily
support partial symbolization (i.e., specifying which bytes we want
to symbolize) and function-level tracing (i.e., hooking into the tar-
get library functions and perform just-in-time symbolization based
on our function summaries). In our implementation, we configured
LSym with the same optimistic/last-branch-only mode that kicks
after the 10 seconds timeout period (similar to QSYM).

Dynamic taint analysis. In theory, we could implement our
LSym design on top of Triton’s DTA engine. However, Triton only
supports single-label DTA, that is we can only check if a sink value
is tainted (or not) with no data lineage information. Our design
instead requires one label for each input byte to map input offsets to
affected (tainted) branches. A way to approximate this design with
Triton is to run the program through DTA many times and, at each
run, taint a different input byte offset. Since this is inefficient, we
instead opted for libdft64 [3], an Intel PIN-based DTA framework
that supports multiple labels at the byte granularity. Generating
the branch instruction taintflow is based on the VUzzer’s taintflow
implementation [37].

8 EVALUATION
Weevaluated our LSymprototype on aworkstation runningUbuntu-
16.04 on Intel(R) Xeon(R) CPU E5-4650 v4 with 64 GB RAM. We
used gcov to collect coverage information. Hereafter, with coverage
we mean number of lines of source code executed (unless otherwise
mentioned). We also use the opt and no-opt tool name suffixes to
denote optimistic and non-optimistic configurations of the tools
considered (recall that in optimistic mode we solve only the target
branch constraints as a fallback strategy upon timeout, rather than
giving up on the branch).

Our evaluation focuses on answering the following questions:
RQ1: Does LSym improve (valid) input generation when com-

pared to full data dependency-based concolic strategies like
QSYM’s?

RQ2: Does LSym incur more overhead in terms of memory
consumption when compared to full data dependency-based
concolic strategies like QSYM’s?

RQ3: Does LSym improve hybrid fuzzing with limited time
and computing resources?

8.1 The cost of optimistic solving
In this section, we show that optimistic solving (dropping all the
constraints except for the target branch), as is used in QSYM, is an
overly aggressive constraint debloating strategy that may lead to
generating uninteresting inputs. In particular, we empirically show
that optimistic mode: (1) often invalidates the previous constraints,
thereby affecting coverage in unpredictable ways; (2) may generate

invalid inputs, thereby taking the program into an error state (i.e.,
trivial error-handling code). Moreover, we show that such error-
handling code may contribute substantially to the overall reported
coverage, but providing improvements that are not reflected in
the ability to find more bugs. Previous works (e.g. TFuzz [32] and
VUzzer [37]) have adopted strategies to specifically avoid error-
handling blocks. For empirical findings, we use three real-world
applications– libpng-1.2.56, pcre2-10.00 and objdump-2.34.

For libpng-1.2.56, we use a 218-byte size PNG seed input and
test with QSYM, Triton, and LSym.We configure each tool to negate
all the branches in the seed execution trace andmeasure the updated
coverage.

As shown in Table 3, the total coverage of all inputs generated
by QSYM is 1,005 and 871 for QSYM-no-opt. This means that opti-
mistic mode accounts for 134 out of a total of 1,005 new inputs. An
inspection of the source code reveals that 94 out of the 134 (∼70%)
newly covered code lines by optimistic solving actually belong to
error-handling code. (The number -94 is calculated by substracting
88 from 182, indicating that 94 more error-handling code is intro-
duced by optimistic mode.) The implication is that, while no-opt
mode allows QSYM to never fail in generating inputs, the gain in
code-coverage is often accidental in the sense that new input is not
the intended one that flipped the target branch, but rather some
random branch, leading the execution to error-handling blocks. We
dub this as inferior input generation for executing error handling
blocks was not intentional as opposed to existing work (e.g. [24])
that target error-handling blocks for bugs.

Table 3: Coverage of libpng-1.2.56 on a 218-byte seed input
by QSYM, QSYM-no-opt and LSym.

coverage difference error code difference
QSYM 1005 \ 182 \

QSYM-no-opt 871 -134 88 -94
LSym 991 -14(+109, -123) 95 -87

In fact, although the table suggests QSYM has more coverage
than LSym (1005 vs. 991), manual code inspection reveals that the
additional coverage is mainly due to executing error-handling code.
Specifically, we manually analyze the line coverage and determine
that QSYM has 14 more coverage in total than LSym and LSym
generates 109 lines of coverage which QSYM fails to cover. Mean-
while, QSYM has 123 lines of coverage which LSym fails to cover,
however, 87 out of 123 are new error handling code. (The number
87 is calculated by substracting 95 from 182.) This shows that LSym
can generate more code coverage other than error-handling code
than QSYM, and LSym can solve constraints that QSYM fails to
solve correctly within timeout limit (thus falling back to optimistic
mode).

We repeated the same experiment with pcre2-10.00 with a 36-
byte input and the results are shown in Table 4. We observe that
QSYM generates 45 more lines of error code than LSym, and 31
of which are caused by negating the branches incorrectly under
optimistic mode (compared with the coverage generated by QSYM
without optimistic solving, i.e. QSYM-no-opt). We also observe
that LSym generates 28 lines of code regarding the target branches,
however QSYM fails to achieve them. Instead, QSYM finds 289 extra
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lines of codewhich includes error-handling code and code caused by
negating non-target branches (a case of accidental code-coverage).

Table 4: Coverage of pcre2-10.00 on a 36-byte seed input by
QSYM, QSYM-no-opt and LSym.

coverage difference error code difference
QSYM 1320 \ 70 \

QSYM-no-opt 1209 -111 39 -31
LSym 1003 -317(+28, -289) 25 -45

We observed similar findings in the case of objdump-2.34.When
we consider the if-else branch in the
bfd_elf_string_from_elf_section function (elf.c), the branch
is hit 6 times during the execution of the seed. When QSYM at-
tempts to solve the 3 deepest runs of the branch, the solver re-
sorts to optimistic solving. The 3 new inputs generated by op-
timistic solving never hit the target branch and branch off ear-
lier in bfd_elf_setup_sections (again a case of accidental code-
coverage). We also notice that the inputs generated by optimistic
solving finally makes the program execution into error handling
code, and in result, QSYM shows 17more line coverage in objdump.c
compared with LSym, which turns out to be error handling code.
In other words, these extra coverage is not what we originally try
to achieve and in result are useless.

Overall, our results answer RQ1, confirming LSym outperforms
state-of-the-art solutions in valid input generation and produces
higher-quality inputs overall.

8.2 The cost of constraint bloat
In this section, we show that inverse policy, collecting all con-
straints based on (data) dependency chaining, may severely impact
performance on real-world applications. We do so by directly com-
paring LSym toQSYM,while noting that QSYM’s concolic execution
engine is much faster [33].

8.2.1 The cost of tracking all branches. Solutions such as QSYM try
to solve all the branches found during the execution of the target
application—including those from dynamic libraries (libc.so.6,
linux-vdso.so.1, /lib64/ld-linux-x86-64.so.2, etc.). How-
ever, targetting such libraries has little or no positive effect on
the coverage on the main application. LSym, on the other hand, is
application-aware in the sense that it selects branches only from
the main application3.

In order to measure the effect on code-coverage and memory us-
age, we ran a series on exepriments on four applications– libpng-
1.2.56, libarchive-2017- 01-04, harfbuzz-1.3.2 and boring-
ssl-2016-01-12. The results are summarised in Table 5. In the
following, we elaborate our findings on libpng-1.2.56. We run
QSYM and LSym on libpng-1.2.56 with a single png seed file of
218 bytes. To cover each branch, QSYM takes 2 hours, 27 minutes
and 12 seconds on this single input, while LSym takes only 11
minutes and 14 seconds. We also show the results when we con-
tinue running LSym to keep solving other branches from the newly
generated inputs for the remaining time, completing 19 rounds

3For fuzzing a library, we statically compile it with the utility by using
--disable-shared option.

on concolic execution and achieving better coverage than QSYM
(Table 5).

QSYM produces 7031 inputs4 and achieves 1005 lines of coverage.
In the same time span, LSym generates inputs for the branches in
19 files, achieving 1145 line coverage, despite a much slower concolic
execution engine. We also observe that out of 7031 inputs generated
by QSYM, 1050 (14.93%) of them are generated in optimistic mode,
which means QSYM could not solve the related branches in 10
seconds. In contrast, out of the 844 inputs generated by LSym,
only 72 (9.68%) are solved by optimistic mode. These results show
that the constraint debloating in LSym enables it to solve more
complicated branches than QSYM. Another thing worthmentioning
is that QSYM consumes much more memory than LSym, with 5437
megabytes at most in the concolic execution process for one input,
while LSym consumes only 300 megabytes in one run, and at most
1005 megabytes for 19 files. We observe similar effects in three
other applications, as shown in Table 5. In all of the cases, LSym is
more efficient in solving constraints than QSYM as is evident from
column opt in Table 5 (LSym does not fall to optimistic mode as
often as QSYM).

Table 5: The result of running libpng-1.2.56, libarchive-2017-
01-04, harfbuzz-1.3.2 and boringssl-2016-01-12 with LSym
and QSYM for the same time duration, and also LSym for
the same seed input.

prog method files inputs opt time mem(mb) cov(loc)

libpng
QSYM 1 7031 1050 2:27:12 5438 1005
LSym 19 844 72 1005 1145
LSym 1 58 7 0:11:14 300 991

libarchive
QSYM 1 5178 764 0:23:21 15597 2244
LSym 54 1065 0 440 2318
LSym 1 431 0 0:07:03 440 1719

harfbuzz
QSYM 1 7819 849 0:22:12 2544 2891
LSym 19 1917 8 469 3184
LSym 1 745 2 0:01:43 469 2880

boringssl
QSYM 1 4737 353 1:28:33 6767 1321
LSym 18 3572 235 1769 1345
LSym 1 1165 38 0:27:38 1769 1295

8.2.2 The impact of bloat on input size . The practical implications
of constraint bloating become even clearer if we relate it to input
size. Intuitively, if the data-dependency chain used in QSYM and
similar approaches gets bigger this will also affect the performance.
As an illustration, we measure the memory overhead and execution
time of QSYM, Triton and LSym on four programs from the Google
Fuzzer Test Suite that have input intensive computation: guetzli-
2017-30, libarchive-2017-01-04, boringssl-2016-01-12 and libpng-1.2.56.
As suggested by Klees et al. [27], we choose seed inputs of different
sizes for this evaluation. However, our choice of maximum size
is constrained by the fact that on inputs larger than 1KB, QSYM
could not finish within a three hour time limit. Figure 2 shows that
the time and memory consumption for QSYM, Triton and LSym for
growing input sizes diverge quickly and are only comparable for
very short inputs. These are not isolated cases and we encountered
many issues with input sizes during our experiments. For instance,

4The inputs do not translate to branches, as QSYM frequently produces multiple inputs
for a single branch.
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Table 6: The number of UNSAT branches for LSym and
QSYM on eight applications. This indicates that how many
branches cannot be solved by the solver (Z3) based on the
constraints collected by both methods.

libarchive unsat solved percentage
LSym 7 390 1,76%
QSYM 81 169 32,40%
libxml2 unsat solved percentage
LSym 42 260 13,91%
QSYM 126 214 37,06%
pcre2 unsat solved percentage
LSym 48 664 6,74%
QSYM 894 520 63,22%
sqlite unsat solved percentage
LSym 0 12 0,00%
QSYM 330 673 32,90%

boringssl unsat solved percentage
LSym 1064 16984 5,90%
QSYM 4325 5737 42,98%
guetzli unsat solved percentage
LSym 137 1800 7,07%
QSYM 2829 3734 43,11%

harfbuzz unsat solved percentage
LSym 948 13343 6,63%
QSYM 5024 9207 35,30%
libpng unsat solved percentage
LSym 90 1305 6,45%
QSYM 4411 7015 38,60%

when we ran libpng-1.2.56, with a png seed file of 1096 bytes,
QSYM did not finish in 4.5 hours at which point it had already
consumed 20GB of memory. In contrast, LSym finished in 3 hours
with at most 3GB overhead. We conclude that with respect to RQ2,
LSym incurs much less memory overhead compared to constraint-
heavy solutions such as QSYM—even if it drops to optimistic mode
after the ten seconds time-out.

8.2.3 The efficiency in solving complex branches. One of the main
design criteria in QSYM is to tackle the problem of over-constraints
which may result in unsatisfiable (UNSAT) constraints in generat-
ing new inputs [12]. LSym’s taint based constraint collection also
aims to address the problem over-constraints. In order to test the
quality of collected constraints by LSym and QSYM, we analyse a
set of applications to empirically observe the number of UNSAT
branches in both of the approaches. We run these applications on
seed inputs to record for how many branches, the solver returns
UNSAT, thereby indicating the infeasibility of generating inputs
that flip those branches. In case of UNSAT, QSYM falls back to opti-
mistic mode to still generate inputs. We can see in Table 6 that LSym
returns UNSAT branches at most 13.91% of the times, while QSYM
returns UNSAT at least 32.40%. which shows that QSYM fails to
solve more complex branches more often than LSym, which could
be a side effect of over-constraints5. This number shows the ability
of the concolic execution engine to solve complex constraints if
the problem of over-constraints is addressed carefully and LSym is
better at minimizing the problem of over-constraints.

To see the effect of these UNSAT behaviour on the input genera-
tion, wemanually analyse a branch at 0x405af4 in guetzli-2017-3

5 The percentage is calculated unsat*100 / ( unsat + solved ).

-30 which is located in source code file
jpeg_data_reader.cc:965. The branch is actually a switch com-
mand, and the target code lies in lines 1022 and 1023. In the original
input, these two lines are not covered. Ideally, concolic execution
should flip the branch and cover the lines 1022 and 1023. In QSYM
normal mode, trying to flip this branch returned UNSAT by the
solver, indicating that constraints were not solvable. As a result,
QSYM falls back to optimistic mode, generating 7 optimistic new
inputs. For the same branch, LSym generates 7 inputs without the
solver returning UNSAT. By analysing the coverage introduced by
both methods, we find out that LSym covers lines 1022 and 1023,
while QSYM fails to do so in spite of generating inputs with opti-
mistic mode. On further analysis, we found that while solving the
branch 0x405af4 in optimistic mode, QSYM accidentally negate a
previous branch on line 230. In the original input and also inputs
generated by LSym, branch at line 130 is not taken and lines 231-235
(guarded code by the line 130) are not covered, however, inputs
generated by QSYM flip branch at line 130 and cover lines 231-235.
This further confirms our finding of section 8.1 that inputs gener-
ated by QSYM’s optimistic mode may not always flip the target
branch.

8.3 Concolic execution evaluation
In this section, we compare LSym’s concolic execution approach to
that of its Triton baseline. In particular, we are interested in measur-
ing the improvements on concolic exection time and coverage due
to function-level tracing and taint-assisted partial symbolization.

For this purpose, we select two random input files with different
sizes across four applications (3 representative applications from
the Google Fuzzer test suite and the popular objdump used in much
prior work in the area). Table 7 presents our results, also breaking
down the improvements by the individual components (function for
function-level tracing and taint for taint-assisted partial symboliza-
tion). On average, function-level tracing alone can reduce concolic
execution time by 9.39% while taint-assisted symbolization alone
yields a 30.65% reduction. Overall, LSym improves Triton’s conolic
execution time by 37.54% on average. On top of these improvements,
LSym also improves Triton’s concolic execution coverage by 3.96%,
which stems from the fewer instances the less effective optimistic
mode is needed by the underlying engine.

As shown in Table 7, the improvements vary across applications
and input sizes and so do the speedups offered by function-level trac-
ing and taint-assisted partial symbolization. For applications with
a larger number file processing operations, function-level tracing
has a more noticeable impact. For applications with many nested
branches, partial symbolization is a more important contributor to
the improvements.

A more detailed LSym vs. Triton comparison on emulation time,
constraint solving time, and memory consumption is presented in
Table ?? in the appendix. Summarizing here, across all test cases,
we observe a considerable reduction in emulation and constraint
solving time (26.23% and 29.41% on average). LSym also reduced
memory consumption by 20.62% on average. All these improve-
ments, while already interesting, become much more significant
when LSym is used as an end-to-end hybrid fuzzer rather than
a standalone concolic execution engine. In Section 8.3, we show
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(a) Time consumption in hours on guetzli-2017-
30 for growing input size (in bytes)

(b) Memory consumption in MB on guetzli-
2017-30 for growing input size (in bytes)

(c) Time consumption in hours on libarchive-
2017-01-04 for growing input size (in bytes)

(d) Memory consumption in MB on libarchive-
2017-01-04 for growing input size (in bytes)

(e) Time consumption in hours on boringssl-
2016-01-12 for growing input size (in bytes)

(f) Memory consumption in MB on boringssl-
2016-01-12 for growing input size (in bytes)

(g) Time consumption in hours on libpng-1.2.56
for growing input size (in bytes)

(h) Memory consumption in MB on libpng-
1.2.56 for growing input size (in bytes)

Figure 2: Time and memory cost for QSYM, Triton and LSym

how our single-input improvements in concolic execution time and
coverage in particular are crucial to improve the effectiveness of
hybrid fuzzing.

8.3.1 Effect of not tainting implicit flows. We measure the effect
of not considering implicit flows by following a simple strategy.
We collect the constraints for a target branch and generate the
corresponding input. If we are able to flip the branch, then we
consider it a case where lack of implicit has not affected the result.
In our experiment, we run libxml2-v2.9.2 and try to negate every
branch of the binary with a xml seed file. Then we analyse the line
coverage of source code to see if each branch is negated successfully.
The results show that out of 62 branches in the binary, 45 are
negated successfully, while 17 fail. The ratio of successfully negated
branches is 72.6%. We consider this result good enough for the
fuzzing application, in spite of loosing few constraints. The results
presented in the previous section 8.1 on other applications also
manifest the similar trends. For example, in the case of objdump,
LSym reached and flipped branches showing that the lack of implicit
taintflow does not affect the accuracy substantially. In the next
subsection, we will show the results of hybrid fuzzing evaluation.

8.4 Hybrid fuzzing evaluation
So far we have evaluated the performance of LSym with respect
to specific dimensions individually, this section evaluates LSym as

Table 7: Improvement on concolic execution time and cover-
age for LSym vs. its Triton baseline. function=function-level
tracing only. taint=taint-assisted partial symbolization only.
LSym =both taint and function combined.

application Triton function taint LSym

boringssl-2016-02-12
input 1 time 0:24:19 0:25:17 0:21:06 0:17:05

coverage 1090 1087 1090 1090

input 2 time 0:30:32 0:30:19 0:20:49 0:13:51
coverage 1131 1146 1156 1151

guetzli-2017-3-30
input 1 time 0:01:42 0:01:21 0:01:16 0:01:22

coverage 91 91 108 108

input 2 time 0:20:37 0:18:48 0:09:33 0:07:55
coverage 99 99 99 99

objdump-2.34
input 1 time 1:08:27 0:58:08 0:52:48 0:52:17

coverage 1499 1499 1498 1499

input 2 time 1:03:18 0:52:01 0:50:23 0:49:38
coverage 784 784 784 784

libpng-1.2.56
input 1 time 0:15:56 0:15:15 0:14:25 0:13:51

coverage 987 987 1087 1087

input 2 time 0:14:22 0:12:40 0:04:27 0:04:04
coverage 1164 1164 1177 1177

average improvement time -9,39% -30,65% -37,54%
coverage +0,12% +4,01% +3,96%

a hybrid fuzzer in terms of code-coverage and bug detection. We
use two different datasets for our evaluation: the Google Fuzzer
Test Suite (GFTS) [2] and five real-world applications. We use the
real-world applications to show that LSym is practical and finds
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new bugs in real software.In all our experiments, we fuzz each
application for 24-hours.

8.4.1 Experimental Results on Google Fuzzer Test Suite. The Google
Fuzzer Test Suite contains a set of 24 applications with differ-
ent functionality and complexity, and a clear description of their
(known) vulnerabilities. Though the test suite has 24 applications,
due to issues with Triton and libdft, we could only run LSym suc-
cessfully on 18 of them. Table 8 shows the six applications that
failed to run with a explanation for the failure. In our comparison,
we include both QSYM and the widely used AFL [46] fuzzer. Recall
that in our implementation, LSym uses AFL as the main (front-end)
fuzzer and Triton as the backend concolic engine).

Table 8: Applications in Google Fuzzer Test Suite that fail to
run by LSym.

applications reason for failure
freetype2-2017

libdft64 fails to trace tainted byteslcms-2017-03-21
libssh-2017-1272

openthread-2018-02-27
openssl-1.1.0c Triton fails to disassemble the codewpantund-2018-02-27

We run a 24-hour test on each application with four methods
(AFL, Triton, QSYM and LSym) for six times and compare the
results on the geometric (geo) means over these runs. Table 9 shows
the overall results of our fuzzing evaluation. Note that none of
the fuzzers found any crash in the bottom 7 applications in the
table. For all the 11 applications where we did find crashes, LSym
found the target (known) vulnerability in each application much
faster than QSYM. Besides, LSym found the target vulnerability in
two applications (harfbuzz-1.3.2 and sqlite-2016-11-14) where AFL,
QSYM and Triton fail to find any crash. However, while the coverage
of LSym better on average, it is not always better than QSYM. For
example, for applications like libxml2-v2.9.2, libarchive-2017-01-04,
and libpng-1.2.56, the average coverage of LSym is not as good as
QSYM. There are two reasons, as we have shown in the previous
sections. First, QSYM generates more coverage in other (unrelated)
libraries, because it analyzes all branches in the application. Second,
QSYM and Triton more frequently perturb previous constraints in
optimistic code and in doing so may lead to execution elswhere
(often error handling code).

In general, for the 18 applications, the increase in percentage of
coverage and time speed-up rate for LSym is shown in Table 9 and
Table 10. On average, LSym achieves 7.13% more coverage and hits
the target vulnerability 2.81× faster than AFL; 7.61% more coverage
and hits the target vulnerability 4.79× faster than QSYM; 10.87%
more coverage and hits the target vulnerability 2.67× faster than
QSYM. Finally, it finds vulnerabilities in two applications where
AFL, QSYM and Triton failed to find anything in 24 hours.

8.4.2 Finding new bugs in real-world applications. In addition to
Google FTS, as a case study for bug finding, we run QSYM and LSym
on the latest available versions of 5 real-world applications, each for
24 hours. Table 11 presents our results. As shown in Table 11, we
found 17 new bugs across applications. For crash traging, we used
crashwalk [1], useful to group crashes into clusters and simplify

further manual analysis. We then used AddressSanitizer to run each
crashing input and manually inspected the root cause. We reported
all the new bugs to the developers with detailed information. Four
bugs have already been fixed at the time of writing. As shown in
Table 11, QSYM fails to find 9 of the new bugs found by LSym. We
also notice that LSym finds the new bug much more faster than
QSYM in most cases.

9 RELATEDWORK
In this section, we survey themost relevant relatedwork on concolic
execution and hybrid fuzzing.

9.1 Concolic Execution
A number of solutions have previously suggested strategies to
make symbolic or concolic execution more efficient. The chain-
ing approach [16] has pioneered work on using data-flow infor-
mation to accelerate concolic execution, using data dependency
analysis to accelerate testing. SAGE [18] combines symbolic execu-
tion with coverage-maximizing heuristics to mitigate its scalability
problems and find bugs quickly. STINGER [4] uses static type-
dependency analysis to symbolically execute only the parts of the
program that may interact with symbolic values. Triton [38] is an
instrumentation-based dynamic binary analysis tool which imple-
ments concolic execution and optimizes the collected constraints.
Triton supports emulation for all the Linux x86/x64 system calls,
thus environment-related constraints can be introduced by tracing
system calls and symbolizing the corresponding memory locations.
Similar to QSYM [45], Triton also supports non-sound constraint
debloating policies by only focusing on the constraints of a tar-
get branch. Chopper [42] is a source-based solution which allows
users to exclude uninteresting parts of the code during symbolic
execution, using static analysis to detect and resolve side effects.
Other solutions focus on optimizing constraint solving itself. For
instance, NEUEX [39] uses neural networks to check satisfiability
of mixed constraints and solve them efficiently. Compared to all
these solutions, LSym focuses on optimizing off-the-shelf concolic
execution tools by means of conservative constraint debloating,
which is a simple and effective way to improve the scalability of con-
colic execution without much compromising its soundness. Very
recently Poeplau et al. proposed SymCC [34] and SymQEMU [35]–
compilation-based symbolic execution technique for source and bi-
nary solutions respectively. We believe that the technique presented
in LSym can further enhance symbolic execution performance by
combining abovementioned techniques with taintflow analyses (e.g.
LLVM DSan pass with SymCC and TaintBochs [13]/PANDA [15]
with SymQemu).

9.2 Hybrid Fuzzing
Combining concolic execution with fuzzing in a hybrid fuzzing
system has recently been gaining momentum in the research com-
munity. Driller [41] suggests triggering concolic execution only
when fuzzing gets "stuck" to reduce the scalability impact. Other ap-
proaches suggest more sophisticated seed/branch selection policies.
For instance, DigFuzz [47] proposes a Probabilistic Path Prioritiza-
tion method which defines the complexity of each branch and only
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Table 9: Fuzzing result on Google Fuzzer Test Suite with AFL, Triton, QSYM, and LSym. Due to space paucity, we divided
the table into two and Table 10 shows results for the remaining applications. geomean column shows means that spans over
coverage column of Table 10.

applications method code line coverage time to find target bug improvement on coverage improvement (in times) on finding bugs

c-ares-CVE-2016-5180

AFL 40.65 00:22:46 4.85% 3.52
QSYM 39.83 00:24:52 7.00% 3.85
Triton 40.48 00:25:52 5.29% 4.00
LSYM 42.62 00:06:28

guetzli-2017-3-30

AFL 3950.16 04:27:02 16.74% 7.06
QSYM 3721.57 06:00:08 23.91% 9.51
Triton 3605.52 01:53:47 27.89% 3.01
LSYM 4611.22 00:37:51

json-2017-02-12

AFL 3473.19 00:01:08 1.03% 1.84
QSYM 3392.09 00:04:16 3.44% 6.92
Triton 3463.99 00:01:12 1.29% 1.95
LSYM 3508.83 00:00:37

libxml2-v2.9.2

AFL 6046.78 13:07:29 4.33% 5.19
QSYM 6970.87 09:19:53 -9.50% 3.69
Triton 5910.36 04:33:38 6.73% 1.80
LSYM 6308.41 02:31:38

llvm-libcxxabi-2017-01-27

AFL 11527.11 00:14:30 1.21% 1.07
QSYM 10970.74 00:21:02 6.34% 1.56
Triton 11066.52 00:23:07 5.42% 1.71
LSYM 11666.78 00:13:30

openssl-1.0.2d

AFL 3380.02 00:37:17 0.64% 4.34
QSYM 3351.56 00:29:16 1.49% 3.41
Triton 3354.88 00:43:07 1.39% 5.02
LSYM 3401.59 00:08:35

pcre2-10.00

AFL 23737.37 00:58:29 11.01% 1.34
QSYM 25448.9 01:21:47 3.54% 1.87
Triton 24879.05 01:03:36 5.91% 1.45
LSYM 26350.23 00:43:45

re2-2014-12-09

AFL 5414.22 01:30:51 3.32% 4.41
QSYM 5394.16 10:17:47 3.70% 29.97
Triton 5476.92 01:24:59 2.13% 4.12
LSYM 5593.75 00:20:37

vorbis-2017-12-11

AFL 3145.95 11:19:53 2.53% 1.67
QSYM 3130.53 22:03:54 3.03% 3.26
Triton 3040.56 21:20:50 6.08% 3.15
LSYM 3225.49 06:46:06

harfbuzz-1.3.2

AFL 12235.46 8.63% new
QSYM 12217.58 8.79% new
Triton 12535.6 6.03% new
LSYM 13291.75 16:06:20

sqlite-2016-11-14

AFL 8485.51 19.03% new
QSYM 7393.5 36.61% new
Triton 5519.13 83.01% new
LSYM 10100.32 23:25:35

geomean
AFL 7.13% 2.81
QSYM 7.61% 4.79
Triton 10.87% 2.67

uses concolic execution on these hardest-to-solve branches. Simi-
larly, LEGION [29] appliesMonte Carlo tree search algorithm to iden-
tify the most promising location to explore next and applies a form
of directed fuzzing to reach there. In doing so, it applies symbolic
execution to flip rare branch that is guarded by hard constraints.
LSym can benefit from LEGIONn’s branch selection policy to decide
which node to target next for branch flipping. MEUZZ [10] and
SAVIOR [11] suggest more sophisticated polices based on coverage-
or bug-oriented predictions (respectively). Pangolin [22] proposes
a incremental method called "polyhedral path abstraction", in order
to reuse precious computation results. SDHF [28] suggests using
hybrid fuzzing in a directed fuzzing scenario, by identifying the

sequence of statements before the target. HFL [26] addresses kernel-
specific hybrid fuzzing challenges. A very different and interesting
hybrid fuzzing approach is implemented in TFuzz [32] wherein the
program is transformed by disabling input checks in the program
so that input generation is fast. Further, to reduce the false positives,
symbolic execution is used to verify the validity of the detected bug.
As symbolic execution is expensive, TFuzz applies it on selected
inputs thereby reducing the overhead on such a heavy technique.
However, as also noted in DigFuzz [47], main contribution of most
of the hybrid-fuzzing solutions focuses on the deriving intelligent
ways of optimizing the invocation of concolic execution due to its
known performance overhead. LSym, on the other hand, focuses



LeanSym: Efficient Hybrid Fuzzing Through Conservative Constraint Debloating RAID ’21, October 6–8, 2021, San Sebastian, Spain

Table 10: (Table 9 conti..) Fuzzing result continues on Google Fuzzer Test Suite with AFL, Triton, QSYM, and LSym. where none
of the fuzzers found any bug.

applications method code line coverage time to find target bug improvement on coverage improvement (in times) on finding bugs

boringssl-2016-01-12

AFL 1488.95 3.19%
QSYM 1443.25 6.46%
Triton 1388.49 10.66%
LSYM 1536.5

libarchive-2017-01-04

AFL 5361.98 8.70%
QSYM 6580.91 -11.43%
Triton 5195.87 12.18%
LSYM 5828.69

libjpeg-turbo-07-2017

AFL 3910.65 8.01%
QSYM 3803.15 11.06%
Triton 3002.17 40.69%
LSYM 4223.78

libpng-1.2.56

AFL 1324.64 2.96%
QSYM 1477.36 -7.69%
Triton 1333.01 2.31%
LSYM 1363.79

openssl-1.0.1f

AFL 631.94 10.54%
QSYM 660.21 5.81%
Triton 540.96 29.13%
LSYM 698.56

proj4-2017-08-14

AFL 1281.31 5.25%
QSYM 1325.5 1.74%
Triton 1263.51 6.73%
LSYM 1348.59

woff2-2016-05-06

AFL 14.56 14671.43%
QSYM 779.9 175.77%
Triton 42.04 5015.89%
LSYM 2150.72

Table 11: New bugs found by LSym vs. QSYM. WA=write access, RA= read acces,LL=llvm-libcxxabi-ce3db12

bug type status LSym QSYM
found coverage crash new bug found time found coverage crash new bug found time

1 size-2.34 null point dref rep & fix yes 4666 20 0:05:41 yes 5088 18 0:06:43
2

bento4-06c39d9

heap overflow rep & fix yes

8877 1055 0:00:05

no

9886 251 0:19:21
3 WA violation rep & fix yes yes
4 null point dref rep & fix yes no
5 null point dref reported yes yes
6 heap overflow reported yes no
7

yasm-c9db6d7

heap UaF reported yes

17258 964 0:21:42

yes

16525 188 0:09:358 RA violation reported yes yes
9 RA violation reported yes no
10 stack overflow reported yes no
11

binaryen-0c58de1

heap overflow reported yes

3619 610 0:00:05

no

7730 529 0:00:05
12 illegal inst. reported yes yes
13 assert fail. reported yes no
14 WA violation reported yes no
15 assert fail(16x) reported yes yes
16 LL assertion failure reported yes 7147 147 0:12:29 yes 7438 71 0:52:0217 stack overflow reported yes no

on improving the performance of concolic execution to improve
the hybrid fuzzing. From this perspective, LSym can use several of
these techniques to further improve the overall performance and
vice-a-versa. From this perspective, the closest to our technique is
QSYM [45], which we have discussed and compared thoroughly in
this paper.

Other fuzzers have previously used dynamic taint analysis to find
bugs more quickly. However, unlike LSym, existing taint-assisted
fuzzers all rely on dynamic taint analysis to improve input mutation.
For instance, VUzzer [37] uses taint analysis to identify which bytes

can influence the target branch and only mutates those bytes. An-
gora [9] and derivatives (e.g., ParmeSan [31]) use a similar strategy
but uses gradient descent-based mutation rather than random or
magic number-based mutation like VUzzer. TIFF [23] implements
bug-directed mutation by inferring the type of the input bytes using
dynamic taint analysis.

10 CONCLUSION
In this paper, we presented LeanSym (LSym), an efficient hybrid
fuzzer based on constraint debloating. Rather than custom-optimizing
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the underlying concolic execution engine for hybrid fuzzing, LSym
intelligently combines run-of-the-mill binary analysis tools to elim-
inate unnecessary constraints during concolic execution and speed
up input generation in fuzzing (as an application). In particular,
LSym focuses on two simple constraint debloating strategies, namely
function-level tracing for system I/O emulation and taint-assisted
partial input symbolization. These strategies result in more efficient
and memory-conscious operations of the core concolic execution
component. More importantly, despite the simple branch/seed se-
lection policies and glue code for hybrid fuzzing implemented in
only 1k LOC, LSym outperforms state-of-the-art custom-optimized
hybrid fuzzers and finds more bugs in real-world applications.

While developing LSym, we also notice limitations of our current
implementation that provide a room for further improvements. We
have not empirically tested the effect of implementing implicit taint-
flows on performance in terms of overhead and accuracy. As noted
earlier, function-level tracing involved manually creating the sum-
maries of relevant syscalls and library functions. This functionality
can be enhanced further by adopting function summary approach
of angr, for example. A further area of improvement comes from a
more intelligent approach for input and branch selection. Overall,
we believe LSym provides a new hybrid fuzzing baseline that is
practical, modular, and easily extensible moving forward. To fos-
ter more research in the area, we plan to open source our LSym
prototype in the near future.
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A APPENDICES
A.1 An Example of Function-level Tracing
We take the simple example from Listing 1 and show how we hook
the functions to partially symbolize the input file. We use ltrace
and strace to find the potential relationship between functions
and syscalls, as shown in Listing 3 and Listing 4. We can see that
fopen() opens the input file at a specific address (0x1b5a010) and
the fread() function reads from the same address into a string
buffer (located at 0x7fffb1cf81d0). Thus, we can hook fopen() and
fread().

Listing 3: Using ltrace to demonstrate libc functions called
in the example program.

1 $ ltrace ./ example input
2 __libc_start_main (0x400666 , 2, 0x7fffb1cf86a8 , 0x4008e0
3 <unfinished ...>
4 fopen("input", "r") = 0x1b5a010
5 fread(0 x7fffb1cf81d0 , 950, 1, 0x1b5a010) = 1
6 puts("branch 2"branch 2
7 ) = 9
8 puts("branch 3"branch 3
9 ) = 9
10 puts("branch 5"branch 5
11 ) = 9
12 puts("branch 0"branch 0
13 ) = 9
14 +++ exited (status 0) +++

Listing 4: Using strace to demonstrate syscall functions
called in the example program.

1 $ strace ./ example input
2 execve("./ symbex5", ["./ example", "input"],
3 [/* 11 vars */]) = 0
4 ......
5 open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
6 ......
7 open("input", O_RDONLY) = 3
8 ......
9 read(3, "BBBBBBBBBBBBBBB4BB!ABBBBBBBBBBBB"..., 4096) = 950
10 ......
11 +++ exited with 0 +++

We can also use the automated PIN tool to output the calling
sequences of file processing syscalls. As shown in Listing 5, the
fopen() function sequence falls into the open() syscall, while in
Listing 6, fread() function sequence falls into the read() syscall.
Thus, we know the functions related file processing to hook are
fopen() and fread().

Listing 5: Fopen calling sequences from function to syscall
in the example program.

1 address: 0x400550 , function name: fopen@plt
2 address: 0x4004f0 , function name: .plt
3 address: 0x7f6dd2f91d70 , function name: fopen
4 address: 0x7f6dd2f438a0 , function name: .plt.got
5 ......
6 address: 0x7f6dd2f9db30 , function name: _IO_file_fopen
7 address: 0x7f6dd2f9da40 , function name: _IO_file_open
8 address: 0x7f6dd301b030 , function name: open
9 [*] Open syscall 0x7f6dd301b03e: 2(0 x7ffec8ae76f0 , 0x0,
10 0x1b6 , 0x0, 0x8, 0x1)returns: 0x3

Listing 6: Fread calling sequences from function to syscall
in the example program.

1 address: 0x400520 , function name: fread@plt
2 address: 0x4004f0 , function name: .plt
3 address: 0x7f6dd2f921a0 , function name: _IO_fread
4 ......
5 address: 0x7f6dd2f9d1a0 , function name: _IO_file_read
6 address: 0x7f6dd301b250 , function name: read
7 [*] Read syscall 0x7f6dd301b25e: 0(0x3, 0x9c7240 , 0x1000 ,
8 0x7f6dd2ee8700 , 0x9c70f0 , 0x7ffec8ae50f0)returns: 0x3b6

The next step is to implement function summary. We can get the
string buffer address which should be symbolized by analyzing the
disassembly code of fopen() and fread() functions, as shown in
Listing 7 and Listing 8. Another important information is the read
offset of the input, which we should use to relate the symbolized
bytes to the original input offset. As shown in Listing 9, we can
get the location address where the value of _IO_read_ptr and
_IO_read_base, then we can calculate the value of the file reading
offset as described in Section 4.
Listing 7: Disassembly code of calling fopen() in the example
program.

1 0x00000000004006c0 <+90>: mov
2 0x00000000004006c3 <+93>: callq 0x400550 <fopen@plt >
3 0x00000000004006c8 <+98>: mov
4 0x00000000004006cf <+105>: mov -0x3f8(

Listing 8: Disassembly code of calling fread() in the example
program.

1 0x00000000004006dd <+119>: mov
2 0x00000000004006e0 <+122>: mov $0x1 ,
3 0x00000000004006e5 <+127>: mov $0x3b6 ,
4 0x00000000004006ea <+132>: mov
5 0x00000000004006ed <+135>: callq 0x400520 <fread@plt >
6 0x00000000004006f2 <+140>: movl $0x0 ,-0x404(
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Listing 9: Information of file structure in the example pro-
gram to demonstrate how to calculate the file reading offset.

1 (gdb) p *fp
2 $1 = {_flags = -72539000 ,
3 _IO_read_ptr = 0x6025f6 "",
4 _IO_read_end = 0x6025f6 "",
5 _IO_read_base = 0x602240 'B' <repeats 15 times >,
6 "4BB!A", 'B' <repeats 180 times >...,
7 _IO_write_base = ...... ,
8 _IO_write_ptr = ...... ,
9 _IO_write_end = ......
10 _IO_buf_base = 0x602240 'B' <repeats 15 times >, ,
11 "4BB!A", 'B' <repeats 180 times >..., _IO_buf_end =
12 0x603240 "", _IO_save_base = 0x0, _IO_backup_base = 0x0,
13 _IO_save_end = 0x0, _markers = 0x0,
14 ......

A.2 An Example of Taint-assisted
Symbolization

We firstly use taint analysis to get the tainted bytes of each branch
in the example shown in List 1. In Listing 10, we can see that
the target branch is located at 0x40085, where the tainted offsets
that will influence this branch is offset 14 and 15. Therefore, we
will symbolize offset 14 and 15 in the input. After symbolizing the
related offset by tracing function calls, we can collect constraints
and solve them, as shown in Table 1 in Section 2.

Listing 10: Tainted information of target branches in the ex-
ample program.

1 ......
2 32 reg reg 0x0000000000400773
3 {0,1} {1} {1} {1} {} {} {} {}
4 {3,4,5} {4,5} {4,5} {4,5} {} {} {} {}
5 0x84 0xc6
6 32 reg reg 0x0000000000400773
7 {1,2} {2,4} {2,4} {2,4} {} {} {} {}
8 {4,5,6} {4,5,6} {4,5,6} {4,5,6} {} {} {} {}
9 0x84 0xc6
10 32 reg reg 0x0000000000400773
11 {2,3} {3,4,5} {3,4,5} {3,4,5} {} {} {} {}
12 {5,6,7} {4,5,6,7} {4,5,6,7} {4,5,6,7} {} {} {} {}
13 0x84 0xc6
14 32 reg imm 0x00000000004007f1
15 {2,4} {4} {4} {4} {} {} {} {}
16 {} {} {} {} {} {} {} {}
17 0x84 0x58
18 32 reg imm 0x0000000000400816
19 {4,8} {8} {8} {8} {} {} {} {}
20 {} {} {} {} {} {} {} {}
21 0x84 0x58
22 32 reg imm 0x000000000040083b
23 {15 ,18} {18} {18} {18} {} {} {} {}
24 {} {} {} {} {} {} {} {}
25 0x55 0x55
26 ......
27 32 reg imm 0x0000000000400860
28 {5,9} {9} {9} {9} {} {} {} {}
29 {} {} {} {} {} {} {} {}
30 0x84 0x58
31 32 reg imm 0x0000000000400885
32 {14 ,15} {14} {14} {14} {} {} {} {}
33 {} {} {} {} {} {} {} {}
34 0x76 0x67
35 ......

A.3 Detailed Experimental Results for
Section 8.3

Table 12 shows the experimental results for about the improvement
on execution time, solving time, emulation time and memory con-
sumption for concolic execution by LSym compared with Triton.

Table 12: Time and memory overhead of Triton and LSym.

application Triton LSym

boringssl-2016-02-12

execution time 0:34:11 0:27:34
solving time(s) 200.098 114.661
emulation time 0:30:01 0:24:33
memory 134 107

guetzli-2017-3-30

execution time 0:17:18 0:11:01
solving time(s) 48.021 11.324
emulation time 0:16:30 0:10:49
memory 110 89

libarchive-2017-01-04

execution time 0:08:50 0:07:52
solving time(s) 143.33 137.931
emulation time 0:06:24 0:05:28
memory 123 96

objdump-2.34

execution time 2:38:09 2:01:32
solving time(s) 19.296 12.703
emulation time 2:37:47 2:01:04
memory 474 230

pcre2-10.00

execution time 0:02:25 0:01:55
solving time(s) 40.741 39.162
emulation time 0:01:24 0:01:03
memory 144 137

llvm-libcxxabi-2017-01-27

execution time 0:01:30 0:01:08
solving time(s) 4.920 4.156
emulation time 0:01:26 0:00:50
memory 81 76

average improvement

execution time 22.81%
solving time 29.41%
emulation time 26.23%
memory 20.62%
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