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ABSTRACT 1 INTRODUCTION

Analyzing malicious behavior is vital to effectively safeguard com-
puter systems against malware. However, contemporary malware
frequently contains evasive behavior, which allows it to hide its
malicious intent from analysis. More specifically, if the malware
detects it is being executed in an analysis environment, it resorts
to evasive routines that exhibit benign behavior. Manually deacti-
vating evasive checks requires significant effort, and is therefore
not a scalable technique with regards to the increasing amount of
evasive malware. Unfortunately, the existing systems that automat-
ically analyze evasive malware are impractical, computationally
inefficient, or incomplete by design.

In this paper, we introduce ENVIRAL, an automatic evasive mal-
ware analysis framework that proposes a novel method to ana-
lyze evasive malware, combining the best elements of existing
approaches. We achieve this by applying fuzzing techniques to
repeatedly adapt the view of the execution environment, thereby
iteratively defeating the evasive checks in the target application. We
realize these adaptations by applying mutations to the outcomes of
environment queries, which in turn leads to the exploration of mul-
tiple execution paths. Our experimental results demonstrate that
ENVIRAL can detect and overcome evasive behavior and thereby
exposes previously hidden activity in malware. We evaluate our
system against a similar framework, and conclude that ENVIRAL
can expose 39% more interesting hidden system call activity on
average, and achieves productive explorations where previously
unseen behavior is discovered in 67% more malware samples.
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Every year, billions of malware attacks cause enormous damage.
Nowadays, malware analysts face malware that is increasingly eva-
sive [4, 7, 36]. Such evasive malware thwarts analysis by concealing
its malicious payload. In essence, this type of malware detects analy-
sis platforms to appear harmless there, while it continues its harmful
behavior on target systems. Existing solutions to automatically an-
alyze evasive malware either apply preventive methods [9, 22, 25],
which employ predefined rules to hide known artifacts used to iden-
tify the analysis environment, or explore multiple execution paths
in a reactive manner [6, 19, 21, 32], where branch conditions are
flipped as a response to input-dependent branches. Unfortunately,
preventive methods can be evaded, as some artifacts always remain,
while reactive approaches suffer from path explosion and rely on
forced execution, which can result in impossible execution traces.

To overcome the limitations of these existing approaches, we
introduce ENVIRAL, a hybrid evasive malware analysis system that
combines the best of both preventive and reactive methods. We
merge the optimistic approach of preventive methods with the
exploratory power of reactive techniques, balancing their combined
application based on the evasive capabilities of the specific malware
under analysis. We achieve this by applying fuzzing techniques to
repeatedly mutate the outcomes of environment queries in order
to defeat the evasive checks.

EnvIRAL distinguishes between definite and volatile mutations
to represent preventive and reactive methods, respectively. Envi-
ronment queries that we can clearly identify as evasive, which we
do by evaluating the query context against known artifacts as pre-
ventive systems do, result in a definite mutation being applied to
hide the corresponding artifacts. Alternatively, if we are not certain
about the evasive properties of a query, we apply the mutation in a
volatile manner. This implies that we measure whether the muta-
tion results in an increase in coverage (i.e., the mutation bypasses
a check). Volatile mutations correspond to the exploration seen in
reactive systems, as we attempt to explore alternative execution
paths as an indirect response to input-dependent control flow.

In order to mutate the view of the environment, we dynamically
capture the behavior of the malware by tracking its system calls. Af-
terwards, our mutation strategy decides which system calls receive
a modification in the next execution. For example, if we record a
system call that checks whether a file is present, we may apply a mu-
tation that ensures that the file is marked as not present in the next
execution. Whether this concerns a definite or volatile mutation
depends on the context of the query, for instance, whether the file
name contains a known artifact. We realize this mutation strategy
by building a non-traditional fuzzer that takes a list of system calls
as input, and consequently modifies the view of the environment
by applying various mutation rules. After the exploration phase
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finishes, ENVIRAL produces a descriptive analysis report contain-
ing the overall behavior and evasive expectations of the malware,
along with the consequences of each individual mutation in terms
of discovered activity.

We show that ENVIRAL can expose more hidden behavior in
the evaluated malware samples than the state-of-the-art, with a
geomean increase in unique (i.e., interesting) system call activity
of 1.63x, versus the 1.17x of BLUEPILL [9]. Additionally, out of
338 potentially evasive malware samples, our system manages to
discover hidden behavior in 36.7% of the cases, while BLUEPILL only
does so in 21.9% of the samples.

Contributions.  We summarize our contributions as follows:

e We propose an automatic evasive malware analysis approach,
which can explore multiple execution paths of a target ap-
plication in a consistent manner by repeatedly applying
mutations to the outcomes of environment queries.

e We build an implementation of our approach to showcase
that fuzzing techniques can be applied to the field of evasive
malware analysis.

e We evaluate ENVIRAL against a recently published analysis
framework, where our experimental results indicate that
ENVIRAL can detect a larger number of evasive samples and
discover more hidden behavior.

e Code available at: https://github.com/vusec/enviral

2 BACKGROUND

Malware analysts construct dedicated analysis environments (i.e.,
sandboxes) to safely inspect malware. Common techniques are vir-
tualization [10], emulation, and hardware-based analysis systems
[27]. We consider a malware sample to be evasive (or, environment-
sensitive) if it detects execution in such environments and attempts
to trick automated malware analysis services (e.g., an anti-virus
sandbox) with a benign execution. Detection techniques can be as
simple as calling the IsDebuggerPresent API function, but com-
monly includes environment artifacts, timing [13], and CPU seman-
tics [26]. Environment artifacts span a wide range of fingerprints
that can be used to identify an analysis system. For example, mal-
ware can detect the presence of certain files, Windows registry
values, usernames, or the network configuration. Malware authors
can include many evasive conditions in their programs to increase
the chance of detecting different analysis environments [36].

3 DESIGN

ENVIRAL automatically detects, documents, and overcomes eva-
sive behavior in malware. We repeatedly mutate the outcomes of
environment queries, effectively fuzzing the malware to reveal addi-
tional evasive checks, malicious activity, or unwanted behavior. We
limit our mutation input space to system calls, which represent the
main source of information about the environment. We intercept
Windows’ Win32 and Native APIs (referred to as system calls).

Figure 1 provides an overview of the components of ENVIRAL
and their interactions. The System Call Hooks intercept system
calls, logging their use and returning mutated results on later runs.
The Controller repeatedly launches the target application, each
time with a different set of mutations. It uses runtime coverage as
feedback to decide which input to mutate.
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Figure 1: Overview of the components of ENVIRAL.

3.1 Fuzzing the Environment

ENVIRAL assumes malware generally follows an abort if present
pattern. For example, if a malware sample detects the presence
of a certain VirtualBox artifact, it aborts its malicious intent and
resorts to evasive routines. In this case, a single mutation often
suffices to determine if an environment query is evasive. That is,
we observe whether negating the presence of an artifact results
in the application advancing its (malicious) execution. We treat a
recorded list of system calls as the input, and aim to mutate the
right calls to progress the execution through the evasive behavior.
Unlike traditional fuzzing, we do not mutate the call further after
it manages to pass a branch, greatly reducing the search space.

3.2 System Calls

We use user-level system call hooks to intercept, record, and modify
environment queries. We specifically intercept system calls that
query the environment and those that signal possible malicious be-
havior. We record a total of 36 distinct calls (i.e., excluding Ex/A/W
variants) to cover evasive behavior, and another 65 to capture pos-
sibly malicious activity. The evasion-related system calls are based
on multiple existing sandbox detection tools [1-3, 16, 20]. We log
context such as filenames where potentially relevant for mutations.

3.3 Mutations

We distinguish between two different types of mutations. Definite
mutations modify systems calls that are clearly evasive. For exam-
ple, an application checks if the process "VBoxTray.exe" is running,
where the corresponding definite mutation indicates the process
is not running. We are certain that the mutation has to be applied,
because the process reveals the presence of VirtualBox. Definite
mutations are similar to preventive evasive malware analysis sys-
tems [9, 22], but because we apply them adaptively we can report
which evasion techniques the target uses. Volatile mutations are ten-
tative adjustments to system calls that are only kept if they improve
coverage. For example, consider a scenario where an application
checks if the file "UnknownArtifact.txt" is present. The correspond-
ing volatile mutation forces the outcome of the call to indicate that
the file is not present. Afterwards, our mutation strategy consults
the coverage metric to decide whether this volatile mutation was
beneficial, and hence whether to keep it. Volatile mutations mimic
reactive analysis systems [19, 21], but we require neither expensive
constraint solving nor forced execution, which can create inconsis-
tent or impossible states. Instead, we efficiently explore the search
space using fuzzing techniques, and can mutate system call results
consistently because our mutations are context-aware.
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Figure 2: Flowchart of our exploration strategy.

Figure 2 shows our mutation strategy. We first apply any possible
definite mutations, and then rerun until no additional definite muta-
tions apply. We identify possible definite mutations from the system
call contexts, for example searching for substrings like "VBox". We
then apply volatile mutations one-by-one, starting from the system
call at the end of the trace, closest to termination. We keep only
those mutations that improve coverage.

3.4 Coverage

We measure coverage to decide whether volatile mutations are
beneficial. We are specifically interested in malicious and evasive
behavior, so we measure coverage in terms of system calls. We dedu-
plicate system calls based on their call stacks to prevent additional
loop iterations from affecting the coverage measurement. Using the
number of unique system calls as coverage metric does not intro-
duce any additional overhead or artifacts, since the call recordings
are performed as a part of ENVIRAL regardless. Although a more
(complex) fine-grained tracking method (e.g., hardware tracing) can
improve the feedback loop, we believe that the current evaluation
metric is adequate for showcasing the purpose of the system.

4 IMPLEMENTATION

We implement ENVIRAL for 32-bit Microsoft Windows systems
using a total of 6678 lines of C++ code. We use Microsoft Detours [8]
to insert user-level hooks on Win32/NT API calls. We apply our
instrumentation to the target process using DLL injection, and set
up a bi-directional pipe to communicate new mutations and the
resulting coverage in terms of system call recordings.

5 EVALUATION

For the evaluation of ENVIRAL, we run our experiments in a Virtu-
alBox VM with Windows 7 Ultimate 32-bit, one Intel Core i7-8650U
CPU core, 8 GB of RAM and 350 GB of SSD disk space. We leave
the virtual machine as close to stock as possible, since we want
the evasive malware to detect the virtualized environment in order
to discover and defeat its evasive checks. Unfortunately, due to
limitations in the current setup, the VM does not have an active
internet connection. Nonetheless, one could argue that if we reach
any networking behavior, we have likely already hit the malicious
activity, although networking can also constitute evasive behavior.

5.1 Data Set

For our experiments we make use of a malware data set dump ob-
tained from VirusTotal in 2019. The data set consists of roughly 35K
Win32 executables. We deduplicate the data set using the attached

vhash [29] clustering metric, which leaves a total of 8440 samples.
This subset consists of 27 different types of malware (e.g., trojans
and viruses), and 715 distinct malware families.

5.2 Exploration

To evaluate the exploratory capabilities of ENVIRAL, we run our
automated analysis on all of the 8440 deduplicated malware samples.
This allows us to view to what degree ENVIRAL manages to discover
hidden system call activity in the malware. Unfortunately, there is
no ground truth on which samples contain evasive behavior. We set
the individual exploration time limit to 2.5 seconds, which means
that each configuration of mutations is evaluated for a maximum
of 2.5 seconds. We empirically decide this duration based on the
assumption that malware generally contains evasive behavior at
an early execution stage, and through initial results showing that
the time is sufficient for malware to exit gracefully or end up in an
infinite loop. The total exploration time is set to 50 seconds, meaning
that we can assess at least 20 incremental mutation setups.

Out of the 8440 samples, ENVIRAL produces an increase in sys-
tem call activity in 2206 samples (26.1%). To achieve this, ENVIRAL
applies a total of 8694 mutations, consisting of 2738 distinct muta-
tions. Of the 8694 mutations, 47.6% are of the volatile type, and the
remaining 52.4% are definite mutations. As a result, we measure
a geometric mean (geomean) increase of 1.47x more system calls.
Note that the measured increase in system call activity concerns
calls with a distinct origin, since we filter out loops and foreign
activity, and hence encapsulate the increase in unique system calls.
Additionally, since the system calls we record are constrained to
calls that we select for their evasive or malicious properties, the
increase in behavior represents interesting activity.

Since we observe that the execution of the malware samples
can be noisy, we select all the gainful samples where the standard
deviation of the number of system calls among three baseline runs
is zero, and hence have a stable baseline. This selection procedure
results in 1613 samples with a stable baseline. The geomean increase
in system call activity for these samples is 1.58x.

Only considering the relative increase in the number of unique
system calls does not accurately represent the ability of ENVIRAL to
discover previously hidden behavior in the malware. For example, a
relative increase of 2.0x can concern a small number of system calls
if the baseline is small. In order to provide a more complete view
of the exploration, Figure 3 displays the absolute increases in the
number of interesting system calls for the 1613 malware samples
with a stable baseline. The majority of the samples fall into the 0
to 50 calls range, and we see increases up to 455 additional unique
calls. While the increases in system call activity do expose hidden



EUROSEC 23, May 8, 2023, Rome, Italy

1439

200 A

1501

Frequency

100 4

50

0 50 100 150 200 250 300 350 400 450 500
Absolute increase in unique system calls

Figure 3: Histogram of the absolute increases in the number
of unique system calls for the 1613 stable malware samples.

behavior, especially when the baseline is stable, the new behavior
does not necessarily concern the malicious payload of the malware.
Since there is no ground truth available regarding this aspect, we
cannot report on the success of triggering the harmful routines.
However, even if ENVIRAL does not defeat all of the evasive checks
up until the payload, the automatically generated analysis report
can help in further analyzing the malware.

5.3 Virtual Machine Detection

Using the resulting system call logs of the previous exploration
experiment, we select all the malware samples that exhibit calls
where the context contains a reference to a VirtualBox artifact. For
example, the logs may contain a NtQueryAttributesFile call with
VBoxTray.exe in its context to detect the presence of this VirtualBox-
specific file. This selection process produces 338 malware samples
that appear to contain behavior to detect virtualized environments.
We use this subset to evaluate the ability of ENVIRAL to detect and
overcome evasive behavior. However, we point out that even though
the logs contain a reference to VirtualBox, some of the malware
samples perform routines that scan the hard disk (e.g., ransomware).
Such scans result in the virtual machine artifacts appearing in the
logs without necessarily being concerned with an evasive check.
The selected samples consist of 21 different types of malware, and
101 distinct malware families. The family distribution indicates
that the potentially evasive samples concern a reasonable spread of
families, with the largest representative, the Neshta virus, covering
9.5% of the 338 samples. For this aforementioned representative,
we confirm (using Joe Sandbox) that the malware family contains
capabilities to detect virtual machines [24].

Out of the 338 potentially evasive malware samples, ENVIRAL
achieves a gain in unique system call activity in 124 cases. As a
result, we measure a geomean increase of 1.50x more interesting
system calls. Selecting the targets with a stable baseline leaves 94
samples, for which the geomean increase is 1.63x. Figure 4 shows the
distribution of the relative increases in unique system call activity
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Figure 4: Histogram of the relative increases in the number of
unique system calls for the 124 gainful samples that interact
with VBox. (Mean absolute gain per bar in parentheses).

System Call Context Freq
NtQuerySystemInformation | SystemBasicInformation 249
NtQueryInformationProcess | Various DLLs 146
GetForegroundWindow None 90
NtQuerySystemInformation | VBoxTray/VBoxService 72
NtQueryAttributesFile [...]\CRYPTBASE.dIl 72
Process32First None 60
Process32Next None 59
NtOpenKeyEx [...]\VirtualDeviceDrivers | 33
NtQueryAttributesFile [...]\VBoxWHQLFake.exe 32
NtQueryAttributesFile [...]\VBoxTray.exe 32
NtQueryAttributesFile [...]\VBoxDrvInst.exe 32
NtQueryAttributesFile [...]\VBoxControl.exe 32
NtOpenKey [...]\Language Groups 31
NtCreateFile \??\VBoxMiniRdrDN 28
LoadLibraryEx [...]\VBoxMRXNP.dll 28

Table 1: Top 15 most frequent mutations in the 338 malware
samples that interact with VirtualBox.

for the 124 gainful samples. Most of the samples fall in the 1.0 - 2.0x
range, however we reach up to a 17.3x increase for one particular
sample. The 17.3x increase arises from a stable baseline of 7 calls,
followed by 121 recorded calls when ENVIRAL applies 6 mutations.
More specifically, the application exhibits the largest increase in
system call activity when ENVIRAL mutates a registry call that
detects the virtual hard disk (DiskVBOX_HARDDISK).

Moreover, Table 1 shows the 15 most frequent mutations that
ENvIRAL applied to the 338 potentially evasive malware samples.
The frequency denotes to how many of the samples the mutation
was successfully applied. The table highlights that the most frequent
mutations often have a clear connection to an artifact that can
expose virtualization or analysis environments.
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Figure 5: Comparison between the increases in unique system
call activity of BLUEPILL and ENVIRAL for the 338 VirtualBox-
related malware samples.

5.4 Comparison against the State-of-the-Art

To provide additional insight into the performance of ENVIRAL, we
evaluate our system against a recently published automatic evasive
malware analysis framework called BLUEPILL [9]. BLUEPILL is a
preventive measure against evasive malware that relies on dynamic
binary instrumentation to hide revealing artifacts on demand. The
framework requires all artifacts and corresponding modifications
to be defined statically beforehand.

Since BLUEPILL only produces a list of the captured evasive
checks, and does not track the overall behavior of the malware,
we extend the framework to accommodate a direct comparison.
We reuse the call instrumentation of BLUEPILL to produce system
call logs of the same functions as ENVIRAL. Since we want the
comparison to be as accurate as possible, we implement the same
optimizations present in ENVIRAL. That is, we detect loops, filter
out foreign activity, and avoid nested hooks.

We compare the capabilities of ENVIRAL and BLUEPILL to detect
and defeat evasive malware using the 338 (potentially evasive)
malware samples described in Section 5.3. For each malware sample,
we execute BLUEPILL thrice to generate a baseline, and another
three times with the anti-evasive countermeasures enabled for the
regular analysis. Just as in ENVIRAL, we select the baseline with
the largest number of system calls, as well as the most successful
countermeasure run. The execution duration of BLUEPILL is set to
10 seconds, which is greater than ENVIRAL, to take into account the
overhead of Intel Pin and the added extensions.

Figure 5 shows the results of the comparison. To recall, ENVIRAL
achieves an increase in unique system call activity in 124 of the
samples (of which 94 are stable), with a geomean increase of 1.50x,
and 1.63x for the stable samples. On the same 338 selected malware
samples, BLUEPILL produces an increase in unique system call activ-
ity in 74 cases. More specifically, the geomean increase in recorded
system calls for the 74 gainful samples is 1.11x. Out of these 74
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samples, there are 35 cases that display a stable baseline. The ge-
omean increase in activity of this subset is 1.17x. Comparing these
results to ENVIRAL, we observe that ENVIRAL can expose hidden
behavior in more samples while also revealing a greater magnitude
of activity than BLUEPILL in the evaluated malware samples. Since
both analysis systems are designed to deactivate evasive checks
upon detection, the resulting increases in system call activity can be
attributed to detecting and defeating evasive behavior, especially if
the baseline is stable. Assuming that there is a correlation between
disabling evasive checks and an overall increase in system call ac-
tivity, we argue that ENVIRAL can detect more evasive behavior
than BLUEPILL, since our system discovers more hidden behavior.
Although BLUEPILL in fact covers more evasive methods, such
as the cpuid instruction to detect the ‘hypervisor present’ bit, from
our experiments we conclude that ENVIRAL is able to discover more
hidden behavior. Additionally, the fuzzing approach of ENVIRAL
allows us to discover the dependencies and consequences of evasive
checks, which in turn results in a descriptive analysis report with
the corresponding increase in behavior of each defeated check. In
contrast, the unmodified BLUEPILL framework focuses solely on
evasive behavior, and hence is constrained to reporting on the ob-
served evasive attempts. Additionally, a previously unseen system
call based evasive technique would have to be discovered manually
in order to be incorporated in BLUEPILL, whereas ENVIRAL may
defeat the evasive check using a volatile mutation, after which the
new method could become a definite mutation in future analyses.

6 LIMITATIONS

Although ENVIRAL actively tries to conceal its presence, for example
by hiding the injected module from the target process, there are
still ways for malware to detect the analysis. The current design of
ENVIRAL has some limitations that negatively impact its detectabil-
ity. First, since we insert user-level system call hooks, malware can
detect the placed detours by checking for jump instructions at the
start of functions. Second, the evasive countermeasures of ENVIRAL
are constrained to system calls, which means malware can still de-
tect the overhead imposed by the analysis using the rdtsc assembly
instruction (and virtualization using cpuid). Both of these limita-
tions can be prevented, for example by using kernel-level hooks
and performing additional instrumentation at the instruction level,
thereby improving the transparency of the system. Even though
kernel-level hooks can still be detected, especially if the malware
escalates privileges, they are stealthier than user-level hooks.
Malware can also apply anti-analysis techniques to bypass or
deceive the system. For example, user-level hooks can be bypassed
by directly invoking a system call via assembly. This results in the
system call not being recorded, and therefore not being mutable. In
addition, malware could guide ENVIRAL away from malicious code
by performing decoy evasive checks in benign code. This can be
addressed by adding backtracking to explore alternative paths.
Additionally, in recent studies we see the introduction of anti-
fuzzing techniques, where programs are equipped with defenses
specifically designed to hinder fuzzing [11, 12]. Malware authors
can incorporate these anti-fuzzing techniques in their programs
to ensure resilience against fuzzing-based malware analysis. We
identify four distinct anti-fuzzing approaches: slowing down the
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exploration, tampering with coverage, preventing crashes, and ob-
structing symbolic execution. Since ENVIRAL does not aim to detect
crashes, and does not rely on symbolic execution (or taint analysis),
the last two techniques are not of relevance. Our system is not very
sensitive to anti-fuzzing techniques in general because, by design,
it generates relatively few mutations.

7 RELATED WORK

7.1 Fuzzing Malware

Existing literature concerned with automatically analyzing eva-
sive malware has introduced techniques such as reference plat-
forms [5, 7, 13-15, 18, 26], forced execution [6, 19, 21, 28, 31, 32],
and hardened environments [9, 17, 22, 25, 27, 33-37]. Furthermore,
applying fuzzing techniques for the purpose of evasive malware
analysis has already gained some traction for Android malware,
though Windows malware has not received the same attention.
For instance, FuzzDro1p [23] and DirRecTDRoID [30] are automatic
analysis framework designed to expose malicious behavior in eva-
sive Android malware. Similarly to ENVIRAL, the main idea of these
systems is to fuzz a set of APIs in order to repeatedly adapt the
values that the target application obtains when interacting with its
environment. These Android-based systems steer the application
towards a configurable target location, where the distance of the
executed path to the target location is used as exploration metric.

The main difference between ENVIRAL and the approaches of
FuzzDroip and DIREcTDROID lies with the assumptions regarding
the exploration. More specifically, the existing systems assume that
the analyst is able to specify a target location to explore towards,
while this seems counterintuitive for evasive malware, where the
target locations of interest still have to be determined by defeating
the evasive checks. We point out that, perhaps, in Android mal-
ware the possible malicious acts (e.g., sending an SMS) are more
constrained than in Windows malware. Therefore, it may be rea-
sonable to expect the specification of a target location, for example
to explore until the SMS API is reached. In contrast, ENVIRAL ex-
plores the target binary in a more autonomous fashion, where it
tries to maximize interesting behavior. This means the analysis is
more independent, while it is, however, also more susceptible to
deception and faulty exploration.

7.2 Reference Platforms

Evasive malware analysis systems that make use of a reference plat-
form aim to detect the differences between executions of a malware
sample on a virtualized and physical machine. By comparing the ex-
ecution traces, the analysis can determine the divergence point (i.e.,
the point where the traces no longer match), which signifies the
point of evasion. There exist multiple analysis systems that employ
different types of reference platforms, such as stealthy virtualized
environments and hardware-based machines [5, 13, 15, 18].

Using a reference platform is a method that is distinct from
the preventive and reactive evasive countermeasures mentioned
throughout this paper. In a sense, reference platforms introduce
a third anti-evasion class; namely, while preventive measures are
defined before the execution, and reactive analysis is applied dur-
ing execution, reference platform analysis comes into play after
the execution. In general, malware analysis based on a reference
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platform is mostly suitable for detecting evasive checks, and not
mitigating (i.e., counteracting) the evasion. However, Kang et al.
[13] demonstrate that if the complete instruction traces are avail-
able, patches against the evasive checks can be derived from the
divergence points using data flow analysis.

The main drawback of this technique is the difficulty of recording
the behavior of malware on a transparent reference platform. Since
the malware may harm the system or infect others, the malware
preferably is executed in a safe environment, such as a sandbox.
Clearly, if the malware detects the reference platform, the analysis
will not succeed. Creating a truly transparent and safe execution
environment that can also record the behavior of the malware
is a complicated task. In contrast, our system does not require a
carefully crafted execution environment, since ENVIRAL is designed
to operate in any (analysis) environment, such that the evasive
checks can be detected and defeated. However, reference platform
analysis and fuzzing the environment do both share the principle
of comparing the behavior of multiple executions of the malware
to identify evasive routines.

8 CONCLUSION

In this paper, we introduce ENVIRAL, an automated evasive mal-
ware analysis system. With ENVIRAL, we showcase that fuzzing
techniques can be beneficial in malware analysis. Existing evasive
malware analysis solutions often disable evasive checks by applying
either preventive or reactive measures. Unfortunately, preventive
analysis can quickly become ineffective, since all of the detectable
artifacts have to be defined beforehand. Similarly, reactive analysis
suffers from scalability issues, due to the computational expense of
exploring multiple execution paths. To overcome these limitations,
ENVIRAL employs a hybrid approach of preventive and reactive
methods, which we achieve by combining fuzzing techniques with
the repeated adjustment of the view of the execution environment.
We realize this by defining two different types of mutations: definite
and volatile mutations, which we implement using user-level system
call hooks. The resulting analysis framework produces descriptive
reports containing the overall behavior and evasive expectations of
the malware, along with the additional system call activity induced
by each individual mutation.

We evaluate our system on its exploratory capabilities, the abil-
ity to detect and overcome evasive behavior towards VirtualBox,
and also in comparison to BLUEPILL, a recently published evasive
malware analysis tool. Using a malware data set obtained from
VirusTotal, ENVIRAL reaches a 1.58x geomean increase in interest-
ing unique system call activity on 1613 malware samples with a
stable baseline. Furthermore, using the behavioral logs of ENvI-
RAL we identify 338 malware samples that contain a reference to
VirtualBox artifacts. Considering only the samples with a stable
baseline, our analysis system manages to expose hidden behavior in
94 of these potentially evasive samples, with a geomean increase in
system call activity of 1.63x. In comparison, analyzing the same sam-
ples with BLUEPILL results in 35 gainful samples, with a geomean
increase in system call activity of 1.17x. From our experiments we
infer that ENVIRAL is able to detect more evasive malware samples,
and exposes more hidden behavior in these samples.
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