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Abstract—With the growing reliance on cloud services for stor-
age and deployment, securing cloud environments has become
critically important. Cloud storage solutions like AWS S3,
Google Cloud Storage, and Azure Blob Storage are widely used
to store vast amounts of data, including sensitive configuration
files used in software development. These files often contain
secrets such as API keys and credentials. Misconfigured cloud
buckets can inadvertently expose these secrets, leading to
unauthorized access to services and security breaches.

In this work, we explore the issue of secret leaks in files
exposed through misconfigured cloud storage. Our analysis
covers a variety of file formats frequently used in development
and focuses on different secrets that have diverse types of
impact as well as the possibility for a non-intrusive validation.
By systematically scanning a large collection of publicly acces-
sible cloud buckets, we identified 215 instances where sensitive
credentials were exposed. These secrets provide unauthorized
access to services like databases, cloud infrastructure, and
third-party APIs, posing significant security risks.

Upon discovering these leaks, we responsibly reported them
to the respective organizations and cloud service providers and
measured the outcomes of the disclosure process. Our respon-
sible disclosure efforts led to the remediation of 95 issues.
Twenty organizations directly communicated their actions back
to us, promptly addressing the issues, while the remaining fixes
were implemented without direct feedback to the disclosers.
Our study highlights the global prevalence of secret leaks
in cloud storage and emphasizes the varied responses from
organizations in mitigating these critical security risks.

Index Terms—Misconfigured cloud buckets; secret leaks; re-
sponsible disclosure.

1. Introduction

Modern applications do not typically build all their
functionality from scratch. Instead, they employ the func-
tionalities provided by other services. Access to these ser-
vices is protected with various types of credentials, such as
usernames and passwords, tokens, API keys, and certificates.

Unfortunately, application developers sometimes fail to
secure these credentials properly. This may lead to unau-
thorized access to private information or illegitimate use

of resources, with potentially disastrous consequences [1],
[2], [3]. For instance, unauthorized parties could gain ac-
cess to the personal information of 296,019 Toyota Motors
Corporation’s customers due to the database access keys
contained in a public GitHub repository [2]. What is more
scary is that these keys were available for almost five years,
from December 2017 to September 2022. Rahman et al. [4]
found that the median lifetime of secrets hardcoded in
infrastructure-as-code scrips is 20 months. According to the
security company Truffle Security, 74% of leaked secrets
are never revoked [5].

During the last decade, the problem of leaked credentials
has become so acute that modern version control system
platforms had to take action. For example, GitHub1 now
provides a service for automatic code scanning for secrets,
which was recently enabled for all push actions to stop secret
leaks [6]. Unfortunately, there are many other channels
of secret leaks. Researchers have carried out measurement
studies to assess how frequently credentials leak through
different channels, such as GitHub [7], [8], [9], [10], mobile
applications [11], [12], Docker containers [1], virtual server
images [13], [14], etc.

In this work, we explore how the secrets are leaked
through improperly configured cloud storage. Recent news
suggests that this channel may become a new source of
leaked secrets [15], [16], [17]. Security issues and secret
leaks related to misconfigured cloud buckets were also
reported by researchers [18], [19]. Yet, so far no research
has attempted to systematically measure the issue of secret
leaks within the misconfigured buckets. Moreover, it is not
yet clear, whether the owners of such buckets care about
this leakage, or if, perhaps, many of the exposed buckets
are made public intentionally, as, e.g., honeybuckets [20].

In recent years, several platforms have emerged that
facilitate enumeration and access to open cloud buckets [18],
[19]. Examples of such platforms include GrayhatWar-
fare [21] and Public Cloud Storage Search2. Additionally,
several open-source tools for generating candidate bucket
names and checking their accessibility are available, e.g.,

1. https://docs.github.com/en/code-security/secret-scanning/secret-
scanning-patterns

2. https://github.com/nightwatchcybersecurity/public-cloud-storage-
search
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S3Scanner3 or Slurp4. In our study, we leverage the Grayhat-
Warfare platform to measure the prevalence of secret leaks
in open cloud buckets. We focus on different file types often
used to store development secrets and scan using regular
expressions for several popular types of secrets that have
various significant impacts if exposed, e.g., financial loss
or access to cloud infrastructure. As our goal is to assess
the actual prevalence of secret leaks and their importance
to bucket owners, in this work, we aim to find only valid
secrets. To do so ethically, we selected the secret types that
can be validated automatically in a non-intrusive way. Thus,
these constraints suggest that our findings only estimate the
lower bound of the secret leak problem.

In our study, we have discovered 215 instances of secret
leaks, some of which could potentially compromise the se-
curity of an entire organization. By collaborating with a rep-
utable CSIRT5 organization, we have responsibly disclosed
160 of the leaks to the identified owners of these buckets,
while the rest were shared with the corresponding cloud
storage providers. We deployed a monitoring system that
allowed us to track the effectiveness of our notification cam-
paign automatically by checking the mitigation measures
taken by the organizations. In total, 95 instances (59.37%)
of secret leaks were mitigated upon our notification. Twenty
organizations replied to the disclosers’ notification emails
acknowledging that the secret leak was an actual issue.

Thus, the contributions of this work are the following:
1) We develop an automated system that scans the files

of interest retrieved from misconfigured cloud buckets,
detects candidate secret leaks and validates them in a
non-intrusive way.

2) We measure the prevalence of secret leaks in open
cloud buckets, showing that while the amount of leaked
valid secrets is relatively low, their impact can be huge.

3) Secret leaks via misconfigured cloud buckets are a
global issue. Vulnerable organizations that we have
identified come from a wide variety of sectors, includ-
ing finance, government, and IT technology, and from a
variety of countries across the globe. The case studies
we examined demonstrate the potentially devastating
impact of the identified leaks.

4) We examine the outcomes of the responsible disclosure
process, demonstrating that reporting to the owners
results in a mitigation rate of 59.37%. Moreover, some
owners do not fix the issue properly: e.g., they restrict
access to the bucket but do not revoke the secret. Thus,
raising awareness about cloud security challenges is an
important objective for the community.

2. Examining the Open Bucket Dataset

As a preliminary step in our study, we first examine the
publicly available bucket data source to understand what

3. https://github.com/sa7mon/S3Scanner
4. https://github.com/0xbharath/slurp
5. https://csirt.global/

TABLE 1: Number of Buckets by Cloud Provider

Update
Date

Cloud Provider Total
ABS AWS DOS GCP

11-07-2023 100,702 375,451 8,096 163,424 647,673
24-09-2023 49,883 315,941 6,780 44,089 416,693
12-11-2023 50,392 311,960 7,018 72,484 441,854

19-01-2024 55,846 316,180 7,138 74,132 453,296

kind of data we are dealing with and to plan an analysis of
this data for detecting secret leaks.

The Dataset. In this work, we rely on the GrayhatWarfare
platform (Grayhat for short) [21], which was already used
in research studies before [18], [19], [22]. This platform
scans the Internet and collects links to open storage buckets
at four major cloud service providers, namely Azure Blob
Storage (ABS), Amazon Web Services (AWS), Digital Ocean
Spaces (DOS) and Google Cloud Platform (GCP). Grayhat
scans and enumerates the files these buckets contain, indexes
the file properties, such as a path to or size of a file, and
facilitates the search over this data6. Table 1 reports the
statistics on the number of discovered open buckets on each
platform for the last several scans at the time of writing. As
we can see, the number of discovered open buckets varies
considerably between the scans, and there appears to be no
pattern in those changes, even across individual providers.
There are several reasons for this. First, it is obvious that
some bucket owners realize the issue and restrict access
to their buckets between the scans. Second, the Grayhat
platform has a takedown option, i.e., they can delete links
to open buckets and files per request. This explains the
reduction of the number of buckets and files. However, at
the same time, new open buckets appear, contributing to an
increase in the numbers.

In this research, we rely on the data about the buckets
released by Grayhat on January 19, 2024. As we can see in
Table 1 for that date, the AWS provider hosts the majority
(69.75%) of all discovered open buckets, GCP and ABS
occupy the second (16.35%) and the third (12.32%) places
correspondingly with numbers of the same order, while DOS
tails the list (1.57%).

Representativeness of Grayhat Data. In 2021, Cable et
al. [18] estimated that Grayhat indexed 37 k AWS buckets,
while their system Stratosphere discovered 190 k more. The
Grayhat snapshot we used in the study contained informa-
tion about 316 k AWS buckets. This means that while the
snapshot in 2021 was not representative, over time Gray-
hat improved its indexing a lot. Another bucket indexing
platform OpenBuckets7 currently lists 416 k misconfigured
AWS buckets. Overall, the total amount of misconfigured
buckets is not known; there is no ground truth to check.
However, we believe the Grayhat sample to be sufficiently
large for the study purposes.

6. https://buckets.grayhatwarfare.com/buckets
7. https://www.openbuckets.io/
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Figure 1: File size eCDF for each provider’s buckets sample.

Examining the Dataset. Table 1 shows that Grayhat pro-
vides a large dataset of open buckets. As each bucket is
a snapshot of a filesystem, a full analysis of the dataset
might be infeasible. We thus first strive to characterize the
composition of this dataset. Note that the buckets might
fluctuate widely in the storage requirements, amount and
distribution of stored files, and other parameters. It is thus
very challenging to identify all these different parameters
and their distribution in the dataset. To get a preliminary,
coarse estimate, we used the standard binary sample size
calculation for an unknown proportion (50%) of the variable
of interest, with the 95% confidence level and 5% margin of
error. For the AWS provider that contains the largest number
of buckets (316,180), this results in a representative sample
of 384 buckets8. Therefore, for a preliminary bucket data
analysis, using the Grayhat API [21], on March 27-31, 2024,
we retrieved from each cloud provider the metadata for a
slightly larger number of 400 non-empty buckets. Table 2
reports the descriptive statistics for this sample (containing
1,600 buckets in total).

Some conclusions can be drawn from Table 2. First,
the number of files in each bucket is relatively high. The
mean number of files in each bucket is between 6 k and
16 k. Note that the maximum number of files per bucket
in ABS, AWS and DOS is close to 1M. The Grayhat
platform imposes this number of results limit; therefore,
in reality, the mean and maximum number of files in a
bucket can be even larger. Second, the size of the files varies
considerably. While the mean file size is about 2.1MB, the
largest files have a size of 2TB, 19.88GB, 19.83GB and
255.65GB for the ABS, AWS, DOS and GCP providers,
correspondingly. Figure 1 shows the empirical cumulative
distribution function of file sizes separately for each cloud
provider. Although the distributions look pretty similar, as
we can see from the figure, the AWS and GCP buckets
contain files of smaller sizes, while the DOS and ABS
buckets have larger files.

Third, as we can see from Table 2 some files have not

8. https://www.qualtrics.com/blog/calculating-sample-size/
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Figure 2: File last modified date eCDF for each provider’s
buckets.

been modified by the owners for years. Figure 2 provides a
distribution of the last modified dates of files in the buckets.

Table 4 reports the Top 10 most popular file extensions
in each provider’s buckets. We see that the most popular
extension across all the providers is jpg. The files with this
extension constitute a substantial portion of all files. For the
ABS, AWS, and DOS providers, the second most popular
extension is png. In general, as we see from Table 4,
media files (pictures, videos, and audio) are very popular
for storing in cloud buckets: around half of the Top 10
most popular extensions correspond to these types of files.
Note that pdf files are also very popular. They may contain
private or sensitive data [23], [24], but we do not analyze
them within the scope of this work as they are not likely to
contain credentials.

While analyzing the metadata, we spotted that some files
have the same name and size. We assumed that they might
be the same one. Unfortunately, the Grayhat platform does
not report the hashes of files, and we could not validate our
assumption through the API. In order to reach our goal, we
randomly picked 100 buckets from each provider and com-
puted a hash digest for each file’s content. Table 3 reports
the results. As we can see, in total, we analyzed 2,844,924
files of more than 7.5TB, of which 2,173,116 (76.39%)
are unique ones across all the providers. Table 3 shows for
each individual provider, the percentage of duplicates varies
from 17.72% to 31.48%. Thus, deduplication of the files
may lead to considerable storage space savings for cloud
providers.

To conclude, we see that the open bucket dataset varies
widely in the number of stored files, their types, and sizes.
Certainly, 400 buckets from each cloud provider is not a
representative sample for the bucket data, given such a large
distribution of parameters. However, as Table 2 shows, the
open buckets dataset is indeed very large, with millions
of files (some of which very big) available already in the
studied sample. A complete analysis of the open buckets
dataset is infeasible due to the extraordinary requirements
for storage and processing capabilities. We thus set out
to design a study that will examine some representative
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TABLE 2: Buckets Sample Descriptive Statistics

Provider Total # of
Buckets

% of Buckets
Analyzed

# of
Files in

the Sample

# of Files per Bucket File Size Last Modified Date

Min Mean Max Min Mean Max Earliest Latest

ABS 55,846 0.72% 6,299,535 1 15,748.84 999,941 0.0B 1.60MB 2.00TB 2010-09-02 2024-02-27
AWS 316,180 0.13% 2,556,454 1 6,391.14 996,620 0.0B 1.55MB 19.88GB 2008-02-29 2024-02-27
DOS 7,138 5.60% 3,996,683 1 9,991.71 994,371 0.0B 1.55MB 19.83GB 2017-09-26 2024-02-26
GCP 74,132 0.54% 2,420,240 1 6,050.60 393,297 0.0B 3.83MB 255.65GB 2012-10-05 2024-02-27

TABLE 3: Files Descriptive Statistics for Downloaded Buckets

Provider
% of

Analyzed
Buckets

Total
Size

# of Files % of Duplicates Max # of
DuplicatesAll w/ Searched Ext. All w/ Searched Ext.

Total Unique Total Unique

ABS 0.18% 771.99GB 275,513 216,375 513 327 21.46% 36.26% 442
AWS 0.03% 1.75TB 1,086,888 780,680 45,676 17,903 28.17% 60.80% 15,358
DOS 1.40% 4.32TB 1,167,530 960,655 8,056 2,972 17.72% 63.11% 3,502
GCP 0.13% 710.14GB 314,993 215,826 1,398 1,318 31.48% 5.72% 597

TABLE 4: Top 10 File Extensions in 400 Buckets of Each Provider

ABS AWS DOS GCP

Ext. # % Ext. # % Ext. # % Ext. # %

jpg 3,668,549 58.24% jpg 793,239 31.03% jpg 1,842,461 46.10% jpg 664,601 27.46%
png 1,110,133 17.62% png 375,024 14.67% png 576,014 14.41% 402,631 16.64%
pdf 303,271 4.81% volt 317,562 12.42% pdf 553,122 13.84% jpeg 333,276 13.77%
jpeg 245,337 3.89% gz 288,226 11.27% jpeg 256,103 6.41% png 270,649 11.18%
js 212,922 3.38% js 152,744 5.97% docx 250,027 6.26% webp 222,246 9.18%
json 198,596 3.15% json 123,968 4.85% doc 60,017 1.50% js 150,342 6.21%

173,868 2.76% pdf 110,872 4.34% delaye 59,841 1.50% json 87,020 3.60%
xlsx 60,306 0.96% mp4 83,253 3.26% html 59,701 1.49% mp3 64,518 2.67%
html 43,032 0.68% jpeg 75,906 2.97% webp 59,505 1.49% css 24,221 1.00%
gif 29,509 0.47% css 69,083 2.70% 49,430 1.24% svg 23,386 0.97%
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Figure 3: Our methodology.

types of files and some representative types of secret leaks,
and help to shed light on the magnitude and impact of
secret leaks via misconfigured buckets and the responsible
disclosure outcomes.

3. Methodology

In this section, we describe the design of our study. Our
methodology is summarized in Figure 3. It consists of the
following core steps.

Step 1: Files-of-Interest (FoI) Identification. During this
step, we collect files in open cloud-storage buckets that
potentially contain secret leaks. To execute this step, we

use the Grayhat platform to search for the files with par-
ticular extensions, namely: bat, conf, config, env,
ini, json, ps1, py, sh, and yml, that are often used
to store access tokens. To select the extensions, we relied
on previous studies of secret leaks from the industry [25],
[26], [27] and academia [7], [28], [29], [30]. Here, we are
looking at a combination of file types that are frequently
published as part of code repositories (e.g., json or py),
and also types that should not be published (like yml, env
or config) [29]. This latter case helps us to measure the
prevalence of secret leaks even in the case if the buckets are
not misconfigured, but are intentionally made public (e.g.
as a means to share data). We can anticipate that publicly
shared files like json or sh might be less sensitive, while
private configuration files such as env, config, and ini
might be more likely to contain secrets and, if accessible,
are thus expected to be inadvertently exposed rather than
intentionally shared.

From Table 4 we see that among the considered exten-
sions only json is found among the Top 10 most popular
extensions in the ABS, AWS, and GCP buckets. As Table 5
demonstrates, the other considered extensions are not as
popular. Indeed, we can expect that many such files are not
so prevalent in the studied data, because they should not be
shared publicly in the first place.

We executed the search for the files on February 7, 2024,
while the last update of the platform data was done on
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TABLE 5: Rank of Searched Extensions over the Analyzed
Sample of 1,600 Buckets

Ext. Extension Rank

ABS AWS DOS GCP

bat 318 157 429 182
conf - 146 - 257
config 41 239 117 81
env - - - -
ini 330 119 102 102
json 6 6 19 7
ps1 103 173 - 274
py 176 61 126 75
sh 99 73 85 55
yml 78 53 105 62

January 19, 2024. Note that the Grayhat platform returns a
maximum of 1,000,000 entries for a search through its API.
To overcome this limitation and collect all relevant results,
we additionally employed a file size filter. Specifically, if
the initial search without the filter returned the maximum
number of entries, we restricted the search by adding an
additional condition on the size of the files and performing
the search incrementally in several steps. Thus, we were able
to collect all files. Also, due to storage limitations, we only
considered files smaller than 100MB. We do not expect that
code-related files are frequently larger than this size limit.

Step 2: Downloading Files. The Grayhat platform provides
the URL to the files as a result of the search. We developed
a script that downloads the files using the provided link. It
took us 48 days (from February 7, 2024 to March 26, 2024)
to download all the files meeting our criteria.

Step 3: Removing duplicates. This step aims to avoid
analyzing the same file multiple times. Before analyzing
a file, its content is hashed, producing a unique fingerprint
representing the file’s content. The generated hash is then
compared to a list of the hashes of previously analyzed files.
If a match is found, the file is considered a duplicate and
skipped. If the hash is unique (no match), the file is analyzed
for secrets.This process ensures that only unique files are
analyzed, preventing redundant analysis and improving the
efficiency of the workflow.

Step 4: Extracting Secrets. To find the secrets in the
files, we applied a regular expression search as is usual in
such studies [1], [7], [11], [31]. The selection of secrets
to look for was guided by their diverse yet significant
potential impact and the feasibility of non-intrusive val-
idation. We focused on high-value secrets such as AWS
tokens, Dropbox, Falcon API, Stripe, and others (the full
list is in Table 6). These types of secrets were chosen due
to the significant security risks they pose if exposed, and
they exemplify different types of impact from secret leaks,
including unauthorized access to sensitive data, financial
transactions, and the ability to modify or delete crucial
resources [7]. In choosing the secrets, we also strived for
a balance between covering the cloud secrets that could be
leveraged for lateral movements and privilege escalation in
the cloud and the secrets embodying supply chain risks that

would allow the attackers to access other sensitive services.
In our study, we aim to systematically examine the issue

of valid secret leaks in misconfigured cloud buckets and
show its importance. Thus, due to the scale of the data to
analyze, it is important that our secret detection methods
do not lead to too many false positives. It is also crucial
that our secret validation methods do not compromise the
confidentiality or integrity of the affected services. This
non-intrusive approach is essential to maintain trust and
integrity in the research community, as well as to prevent
any unintended consequences that might arise from more
invasive validation techniques.

To prepare an initial list of candidate secret patterns, we
studied the relevant literature on secret detection that shared
regexes, e.g., [1], [7], [11], [31], [32], and experiences in
validating secrets, e.g., [12], [33], [34], and investigated
several popular repositories containing secret patterns, such
as Keyhacks9, all-about-apikey10, and Noseyparker11. These
repositories provide a collection of methods and tools for
testing the validity of various API keys as well as regexes
to detect them, and test cases and examples based on
API providers’ documentation. These repositories are used
by security researchers and penetration testers who need
to verify the validity of API keys they encounter during
security assessments. Their approach generally aligns with
best practices for non-intrusive validation, ensuring that
the verification process does not disrupt services. However,
we performed an extensive investigation for all considered
patterns to ensure precise detection and non-intrusiveness in
validation, and in some cases, we had to alter or improve
their methods, as explained below.

To achieve our goals, building upon the foundation de-
scribed above, we had to develop a new regex (AWS SMTP)
and adapt known ones (e.g., for AWS Access Key, Google,
Alibaba tokens) to reduce false positives and accommodate
the configuration file use case. We also proposed completely
new regular expressions that take into account the structure
and format of configuration file types (Generic API Key and
Generic Secret). For instance, the env config file entry has
the format key=value, so we applied these new generic
regexes to find leaks and used the corresponding key name
to determine the exact service. This customized approach
led to significant discoveries, including the identification of
a Crowdstrike Falcon API secret (see Section 6). We also
delved deeply into the API documentation to understand
which secrets can be validated non-intrusively and automat-
ically; the existing tools do not provide this functionality.

To optimize our search and simplify the process of
extracting both secrets and service names, we continually
refined our patterns. This iterative process of creating, test-
ing, and adapting regex patterns allowed us to tailor our
search methodology to our specific needs, resulting in more
comprehensive and accurate secret detection across various
configuration files.

9. https://github.com/streaak/keyhacks
10. https://github.com/daffainfo/all-about-apikey
11. https://github.com/praetorian-inc/noseyparker
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1 curl -IX POST https://api.dropboxapi.com/2/users/
get_current_account -H "Authorization: Bearer <
REDACTED>"

2 HTTP/2 200
3 content-type: application/json
4 cache-control: no-cache
5 x-content-type-options: nosniff
6 x-frame-options: SAMEORIGIN
7 x-server-response-time: 248
8 --------------------------------------------------
9 curl -IX POST https://api.dropboxapi.com/2/users/

get_current_account -H "Authorization: Bearer <
REDACTED>"

10 HTTP/2 401
11 content-type: application/json
12 cache-control: no-cache
13 content-security-policy: sandbox allow-forms allow-

scripts
14 www-authenticate: Bearer realm="Dropbox-API"
15 x-content-type-options: nosniff

Listing 1: Example of valid (status code 200) and invalid
(status code 401) responses for the Dropbox API.

The final list of secrets to detect (available in Table 6)
was selected from the candidate secret patterns after re-
viewing the API documentation to ensure that non-intrusive
validation was possible. Our validation process is outlined
in the next step.

Step 5: Validating Secrets. As mentioned, the validation
process relied heavily on the API documentation provided
by the corresponding services. This documentation outlines
the necessary steps to authenticate and interact with their
respective APIs. By following these guidelines, we could
verify the validity of the exposed credentials without per-
forming any actions that could have side effects and poten-
tially disrupt the service or cause damage to the resource
owners. For these selected API-based services, we relied on
status code responses to verify tokens in a non-intrusive and
non-disclosing manner. Listing 1 demonstrates how status
codes can be interpreted to verify whether a token is valid
or not. In this way, for instance, with Dropbox tokens, we
could confirm access to files; and with GitHub and GitLab
tokens, we could verify repository access levels.

Additionally, we searched for credentials hard-coded in
a URL. Using status code responses, we can determine if the
credentials are valid without causing any disruption. Another
example involved CrowdStrike Falcon API12 discovered us-
ing a generic API pattern, where the key and secret are
needed to first generate an access token. If the credentials
are valid, an access token would be generated; if not, an
error would be raised. This process can be monitored using
the status code, allowing us to validate the credentials in an
automated and non-intrusive manner.

For cloud keys such as AWS access keys, Google Ser-
vice accounts, and Alibaba Cloud keys (marked with a ∗

in Table 6), we employed their respective Python SDKs.
These SDKs are designed to handle authentication and
will raise exceptions if the keys are invalid, providing a
straightforward and secure method to validate the creden-

12. https://www.falconpy.io/Service-Collections/OAuth2.html#usage

tials. Additionally, for AWS SMTP servers, we attempted
to log in using Python’s smtplib13. A failed login attempt,
indicated by a raised exception, was sufficient to determine
that the credentials were invalid, ensuring we could stop
further attempts and avoid unnecessary interactions with the
server. This approach ensured our validation process was
both effective and minimally invasive.

This approach ensured that we could accurately validate
compromised credentials while adhering to ethical guide-
lines and minimizing any potential impact on the services
or their users. This validation process was fully automated
through the implementation of functions designed not only
to validate the credentials once but also to monitor their
validity over time. This continuous monitoring was crucial
during the responsible disclosure phase, allowing us to track
whether the credentials remained active or were revoked by
the owners following our reports.

Our approach aims to detect and report only valid
secrets. Thus, we intentionally ignore all secret patterns
discovered in the files of interest that were found to be
invalid. This means that our method does not generate false
positives, as was reported for other scanning approaches [1],
[7], [35], [36]. However, our method will miss the exposed
secrets that have already been rotated. We discuss this
limitation further in Section 8.

Step 6: Responsible Disclosure. This step in the workflow
involves reporting valid secrets found in the files to their
respective owners or the cloud providers to ensure proper
mitigation. Firstly, the owner of the secret is identified using
public information associated with the bucket, file and/or
data leak in question, or through Open Source Intelligence
(OSINT) techniques, which involve collecting information
from publicly available sources. Once identified, we report
the discovered secret(s) via email.

Step 7: Monitoring. Subsequently, we followed up with the
owners to ensure that the discovered secrets were properly
secured and the necessary remediation steps were taken.
Additionally, we provided extra details about the issues
when requested by the owners to help them understand the
risks. This follow-up is an integral part of the monitoring
phase, where we continuously assess whether reported issues
have been effectively resolved. If not, we proactively follow
up with the owners to ensure that appropriate measures are
taken. This proactive approach helps to mitigate potential
risks associated with these unsecured secrets. At this stage,
we also collect information on what mitigation strategies are
executed by the owners and when. This allows us to evaluate
the effectiveness of the responsible disclosure campaign.
More details of our responsible disclosure process and its
outcomes are provided further in Section 5.

4. Discovered Secret Leaks

Using the Grayhat API [21], we searched for files with
the extensions listed in Section 3 (Step 1) and downloaded

13. https://docs.python.org/3/library/smtplib.html
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TABLE 6: Searched Patterns. (∗ denotes the patterns that were validated using the corresponding Python SDKs provided
by the targeted platform; other secrets were validated based on the status codes. +denotes patterns that we created.)

Type Pattern Regex

AWS Access Key∗ (?:A3T[A-Z0-9]—AKIA—ASIA—ABIA—ACCA)[A-Z0-9]{16}
OpenAI API Key sk-[a-zA-Z0-9]{48}
Google OAuth (?i)\b([0-9]+-[a-z0-9 ]{32})\.apps\.googleusercontent\.com
Google (GCP) Service Account Key∗ \\”type\\”: \\”service account\\”
Google Client Secret (?x)(?i)client.?secret.{0,10}\b([a-z0-9 -]{24})(?:[ˆa-z0-9 -]—$)
Twilio API Key SK[0-9a-fA-F]{32}
Sendgrid API Key (SG\.[0-9A-Za-z -]{22}\.[0-9A-Za-z -]{43})
Slack Bot Token (xoxb-[0-9]{12}-[0-9]{12}-[a-zA-Z0-9]{24})
Slack User Token (xoxp-[0-9]{12}-[0-9]{12}-[0-9]{12}-[a-f0-9]{32})
Slack App Token (xapp-[0-9]{12}-[a-zA-Z0-9/+]{24})
Slack Webhoock (?i)(https://hooks.slack.com/services/T[a-z0-9 ]{8}/B[a-z0-9 ]{8,12}/[a-z0-9 ]{24})
Password in URL [a-zA-Z]{3,10}://[ˆ/\\\\s:@]{3,20}:[ˆ/\\\\s:@]{3,20}@.{1,100}[\\\”’\\\\s]
Stripe API Key sk live [0-9a-zA-Z]{24}
MailChimp API Key [0-9a-f]{32}-us[0-9]{1,2}
Facebook Access Token EAACEdEose0cBA[0-9A-Za-z]+
Mailgun API Key key-[0-9a-zA-Z]{32}
GitHub APP Token (ghu—ghs) [0-9a-zA-Z]{36}
GitHub Fine Grained github pat [0-9a-zA-Z ]{82}
GitLab Pattern glpat-[0-9a-zA-Z\-\ ]{20}
AWS SMTP Server∗+ [A-Za-z0-9. %+-]+@[A-Za-z0-9.-]+\.[A-Z—a-z]{2,}—email-smtp\.[a-z0-9-]+\.amazonaws\.com
GitHub Personal Access Token ghp [0-9a-zA-Z]{36}
GitHub oAuth Access Token gho [0-9a-zA-Z]{36}
Alibaba Cloud∗ LTAI[a-zA-Z0-9]{20}
Generic API Key+ [a—A][p—P][i—I][ ]?[k—K][e—E][y—Y].*[’—\\\”][0-9a-zA-Z]{32,45}[’—\\\”]
Generic Secret+ [s—S][e—E][c—C][r—R][e—E][t—T].*[’—\\\”][0-9a-zA-Z]{32,45}[’—\\\”]
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Figure 4: Size eCDF for files with each searched extension.

all available files fitting our criteria for analysis. Table 7
reports the number of analyzed files and the number of
buckets where these files are found per each extension.

In Table 8, we provide the statistics of files with the
searched extensions that we retrieved from Grayhat. In-
terestingly, the percentage of duplicate files with searched
extensions (68.21% on average) is much higher than for the
sample of downloaded buckets (see Table 3).

Furthermore, Figure 4 shows the distribution of the sizes
for files with each searched extension, while Figure 5 reports
when the corresponding files were modified last time. We
can see that the studied files are relatively small (for all
types, 50% of the retrieved files are smaller than 100 kB),
and they are mostly not very recent (for all types, 50% of
the files were last updated in 2023 or earlier).

Within the analyzed files, we have discovered 215 vali-
dated secret leaks. Figure 6 outlines the properties of the
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Figure 5: Last modified date eCDF for files with each
searched extension.
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Figure 6: Properties of the files with leaked data.
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TABLE 7: Number of Buckets and Files with Searched Extensions

Ext. # of Buckets # of Files

ABS AWS DOS GCP Total ABS AWS DOS GCP Total

bat 232 1,570 47 233 2,082 7,837 56,924 323 7,408 72,492
conf 80 1,121 21 154 1,376 4,089 1,086,445 450 56,604 1,147,588
config 623 1,868 50 315 2,856 38,919 65,512 2,513 11,910 118,854
env 25 224 3 63 315 319 23,288 50 947 24,604
ini 427 2,998 93 499 4,017 80,816 630,257 4,724 18,471 734,268
json 581 1,486 363 919 3,349 1,725,623 1,176,889 967,744 1,143,380 5,013,636
ps1 483 995 14 117 1,609 11,184 36,304 279 22,115 69,882
py 183 2,824 54 549 3,610 148,873 354,255 1,652 118,817 623,597
sh 359 4,621 96 883 5,959 6,920 161,787 669 163,484 332,860
yml 300 6,033 131 891 7,355 25,127 804,708 7,788 93,268 930,891

Unique 2,327 15,545 603 3,281 21,756 2,049,707 4,396,369 986,192 1,636,404 9,068,672

TABLE 8: Statistics of Files with Searched Extensions

Ext. Files File Sizes Last Modified Date

# Unique % Duplicates Min Mean Median Max Earliest Latest

bat 72,492 32,037 55.81% 2.0B 438.14KB 553.0B 29.00MB 2008-05-16 2024-01-04
conf 1,147,588 215,246 81.24% 1.0B 4.05KB 62.0B 9.86MB 2007-11-27 2024-01-04
config 118,854 19,365 83.71% 1.0B 283.95KB 1.26KB 44.50MB 2008-12-10 2024-01-04
env 24,604 4,106 83.31% 6.0B 164.54KB 27.51KB 19.56MB 2013-09-23 2024-01-04
ini 734,268 255,086 65.26% 1.0B 10.79KB 258.0B 29.68MB 2007-04-07 2024-01-04
json 5,013,636 4,190,292 16.42% 2.0B 1.89MB 35.89KB 99.98MB 2012-04-03 2024-01-04
ps1 69,882 13,699 80.40% 2.0B 7.87KB 1.71KB 24.07MB 2012-07-17 2024-01-04
py 623,597 198,278 68.20% 1.0B 45.01KB 4.62KB 28.56MB 2008-03-06 2024-01-04
sh 332,860 39,603 88.10% 1.0B 401.52KB 1.46KB 99.90MB 2007-07-26 2024-01-04
yml 930,891 375,545 59.66% 1.0B 18.42KB 329.0B 88.56MB 2010-03-24 2024-01-04

TABLE 9: Leak Statistics per Provider

Provider Detected Reported Fixed

ABS 18 8 6
AWS 162 129 82
DOS 3 2 0
GCP 32 21 7

Total 215 160 (71,42%) 95 (59,37%)

files with discovered secrets. Each point on this figure
corresponds to a file with secrets. The shape of the marker
represents the extension, while the size is proportional to
the number of leaks per file. Finally, the color relates to
the provider. We can see that, overall, we have files with
leaks going way back and the leaks are widely distributed
temporally.

Table 9 shows the breakdown of the found leaks for
each provider. Not surprisingly, the number of leaked se-
crets correlates with the total number of open buckets (see
Table 2). Table 10 reports on the statistics of leaked secrets
for each file extension. The table shows that files with
the yml, py, sh and json extensions contain the largest
number of leaked secrets. However, if an attacker would
like to maximize the chances of discovering the secrets then
the files with env, config, sh and ps1 look the most
promising (see the “% of Unique” column in Table 10).

On average, secrets are found in 0.0036% of files. Note
that this is a lower estimation, as in this work, we con-
centrated only on secrets that can be verified. Considering
the large number of exposed buckets and the even greater
number of files within them, the threat level of this source

TABLE 10: Secret Leaks Found by File Extension

Ext. Files w/ Secrets # Secrets

# % of Unique Detected Reported

bat 2 0.0062% 3 3
conf 4 0.0019% 4 2
config 19 0.0981% 22 20
env 18 0.4384% 24 22
ini 4 0.0016% 4 2
json 33 0.0008% 33 14
ps1 4 0.0292% 4 4
py 37 0.0187% 40 26
sh 34 0.0859% 37 29
yml 37 0.0099% 44 38

Total 192 0.0036% 215 160

is significantly high. Interestingly, we can see from Table 10
that the number of detected secrets is usually higher than
the number of files with secrets (on average, 1.12 leaks per
file with secrets). This means that the same file is often used
to store multiple secrets.

Table 11 presents the breakdown of the secrets by service
type. As we can see, the most common leaked secrets also
provide access to cloud services. An attacker who gains
access to AWS access keys or Google Service accounts can
cause significant damage and escalate their privileges within
a cloud environment. With AWS access keys, for example,
an attacker can access various AWS services, such as S3
for data exfiltration, EC2 for launching additional instances,
and IAM for modifying user permissions to elevate their
privileges. They could also create backdoors or leverage
AWS services for further malicious activities, like deploying
crypto-mining operations or launching attacks from within
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TABLE 11: Detected Leaks

Service Count

AWS access tokens 100
GCP Service accounts 32
Slack Webhook 15
Sendgrid 14
AWS SES SMTP 13
OpenAI, Facebook, Stripe 6
Twitter 4
GitHub Personal Access Token, GitLab Runner Registration
Token

3

Dropbox, Telegram Bot, Twilio, Mailgun 2
Password in URL, CrowdStrike, Github Client and Secret,
HubSpot, Slack User Token

1

Total 215

the compromised cloud infrastructure [18], [19], [34]. Note
that Table 10, Table 9 and Table 11 also show the details of
our responsible disclosure results, which we discuss in the
next section.

Analysis of Missed Secrets. Since we only analyzed se-
lected file extensions, we now aim to evaluate the number
of missed secrets that might be leaked in other file types. To
estimate this, we downloaded all files in the 400 randomly
selected buckets (100 buckets for each provider) that were
previously analyzed for examining the cloud buckets dataset
as a part of the larger set of 1,600 buckets (Section 2). While
this number of buckets might seem small compared to the
total number of open buckets, it is important to understand
the scale and complexity involved in analyzing cloud storage
buckets. Many of these buckets contain millions of files,
making a full analysis of the entire dataset impractical. How-
ever, the results on this small set of buckets allow estimating
how many secrets our pipeline might have missed.

We scanned each file within these buckets, using the
same list of secret patterns from Table 6, to identify any
leaks we may have missed by only focusing on the file
extensions in Table 5. During our analysis, we found 1 valid
Slack Webhook in a 7z file that was not password-protected
and fully readable. In our set of downloaded buckets, there
are 2,026 files with this extension, meaning that a leak
appeared in 0.0494% of unique files with this extension.
This percent is on par with the numbers reported in Table 10;
therefore this file extension is also worth investigating for
future studies. According to Grayhat, there are currently
483,770 7z files in all open buckets.

Additionally, we discovered an invalid AWS token (Key,
Secret) in a cscfg file. Although this was a true negative,
we decided to further scrutinize this file type given the high
probability of discovering secrets in them in our sample –
a secret, although invalid, was discovered after analyzing
only one file with this extension. At Grayhat, there were
661 references of files with this extension. Out of them,
we managed to download 260 and analyzed them using
our pipeline (the rest are no longer accessible publicly
at the time of writing). In these files, we found 3 valid
secret leaks: 1 token for Sendgrid, 1 for Stripe, and 1 for

Mailchimp14. Thus, the cscfg file type appears to be a very
relevant extension for secret leak monitoring and needs to
be included in future studies.

5. Responsible Disclosure

In our responsible disclosure process, we partnered with
an established volunteer-led, not-for-profit CSIRT organiza-
tion CSIRT.global15 based in The Netherlands and expe-
rienced in vulnerability research and responsible disclosure.
By leveraging their extensive global community of security
experts and trustful relations with different organizations,
we were able to locate the owners of the exposed data more
effectively. Moreover, receiving a vulnerability notification
from a reputable (and thus more trustworthy) organization
can also be more conducive for vulnerable organizations
to react to the message and fix the issue [37], [38], [39].
One of the objectives of CSIRT.global is to notify only
about high-confidence vulnerabilities, reducing the number
of false negative notifications as much as possible. This
allows the organization to maintain good connections with
the notification recipients. The validation process ensures
that this objective is met.

Note that we chose to report to the owners directly,
whenever it was possible to identify them in a responsible
manner, instead of only bulk-reporting to the cloud provider.
Cloud providers manage a vast number of resources, making
it challenging and time-consuming to identify and alert the
correct owner quickly. Also, cloud providers often have nu-
merous reports to process, which can delay the notification
to the actual owner of the compromised data. Contacting
bucket owners directly ensures that the notification reaches
the precise owner of the exposed data, who can respond and
mitigate the issue more swiftly. Owners can also provide
feedback on the disclosure process, helping to improve
future security practices. This is something we saw during
this process: we got multiple responses explaining the cause
of the issue. All responses we received from the owners were
very positive and thankful for the efforts spent on doing this
responsible disclosure. Furthermore, our participation in the
responsible disclosure process ensured that any additional
details requested by organizations regarding leaked secrets
could be provided more quickly and comprehensively. This
kind of interaction cannot be done if a third party (cloud
provider) handles the communications. As a side benefit,
this also allowed us to estimate the effectiveness of a global
direct notification campaign.

5.1. Responsible Disclosure Process

The disclosure process involved the following steps:

14. Note that the leaks discovered during the false negative analysis are
not included in the responsible disclosure results reported in Section 5,
as they were found at a later stage. We shared the details about these
secrets with our partner CSIRT.global organization to report them to
the corresponding bucket owners.

15. https://csirt.global/
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Step A: Identify contact details. We looked for relevant
details in the files that contained the leaks, which sometimes
included email addresses, URLs, organization names, or
developer names. These details were subsequently analyzed
and enriched using OSINT (open source intelligence) tech-
niques, such as LinkedIn searches and email format detec-
tion to identify the appropriate contact details of the right
individuals. Our primary target for contact was technical per-
sonnel, typically starting with members of the security team.
If no suitable contacts were found within the security team,
we expanded our search to include DevOps teams, followed
by developers. In some cases, particularly with startups, we
reached out directly to founders. Additionally, we contacted
organizations through their responsible disclosure programs,
if available, or via information provided on their privacy
policy pages. This proved to be highly effective in estab-
lishing communication channels: 9 out of 11 organizations
contacted using emails from their privacy policy pages
resolved the reported issues. CSIRT.global’s expertise
was essential in this step, as finding the right channel to
securely report a vulnerability is critical.
Step B: Categorize critical data exposure. The data leaks
at organizations whose contacts were identified (160 in
total) were categorized based on their severity using the
Traffic Light Protocol (TLP) system. Critical exposures were
prioritized for immediate action (71 leaks). Less critical
exposures were noted but may not require urgent action
(89 leaks). We prioritized based on the organization’s size,
sector, and the specific nature and impact of the leaks. For
instance, larger organizations were prioritized due to the
higher volume of sensitive data and potential impact. Critical
sectors such as finance, healthcare, and government were
also prioritized given the severe consequences of breaches
in these areas. The nature of the exposed data, such as AWS
tokens, Google service accounts, Dropbox, and Crowdstrike
API, was carefully evaluated to determine the potential risk.
Leaks with the highest impact, such as those granting unau-
thorized access to essential services or sensitive information,
were addressed first. This structured approach ensured that
the most significant vulnerabilities were mitigated swiftly,
reducing the overall risk and protecting sensitive data.
Step C: Send a notification email. Using a standard
CSIRT.global template, a disclosure email was prepared
and sent to the vulnerable organization, detailing the discov-
ered data exposure and how it can be located.
Step D: Tracking and follow-up. The interaction with the
vulnerable organization and the status of the leaked secret
was monitored. Some organizations requested to be provided
with more information about the leak or to prove that it
was exploitable. If no response or an inadequate action was
taken within 30 days, the CSIRT.global team initiated
follow-up actions to ensure the data exposure was addressed,
by reaching out to the organization one more time and
eventually reporting the issue to the cloud provider as well.
Step E: Documentation. The entire process was documented
in a secure file, where the leading researcher kept track
of the secret leak status and the responsible disclosure
outcomes. We note that the first author is also a member

TABLE 12: Summary of the Identification and Disclosure
Process (as of September 15, 2024)

Reported Dropped Unknown Total

160 5 50 215

of CSIRT.global, experienced in vulnerability research
and reporting. He/she was the only person who had access
to the files with the leaks and the leak details, and he/she
coordinated with the rest of the CSIRT.global team
regarding the search for the identities of the vulnerable
organizations and the right contact details within them.

This structured approach ensured that all discovered
leaks were handled promptly and responsibly. The notifi-
cation process involved two CSIRT.global teams (the
research and the incident response teams) and was led by
the first author. Each CSIRT.global team had specific re-
sponsibilities to ensure effective communication and follow-
up. The CSIRT.global research team was responsible for
steps A, B, and C. The incident response team was copied
to the notification email and was responsible for tracking
and follow-up (step D). The first author was responsible for
step E.

5.2. Disclosure Outcomes

The notification process started on April 15, 2024. Ta-
ble 12 reports on the status of this process as of September
15, 2024. In this table, the term “Reported” designates
instances where we successfully identified the owners of
the buckets and subsequently reported the issues to them.
“Dropped” refers to issues that were independently resolved
by the owners without our intervention. Conversely, “Un-
known” denotes buckets for which we were unable to estab-
lish a direct link to a specific organization. These uniden-
tified buckets have been reported to the respective cloud
providers, with the hope that they will assist in identifying
and reporting the issue to the rightful owners.

For these “unknown” buckets, as of paper submission,
only Amazon has replied to our responsible disclosure,
acknowledging the receipt but reiterating in their reply that
it is the responsibility of the customer to fix such issues.
Other cloud providers have not responded to our disclosure.
This emphasizes that reporting to the owner is essential in
fixing the secret leakage promptly.

5.2.1. Owners’ Response Actions. Three primary security
measures are appropriate to fix the issues: restricting access
to buckets, restricting access to files with secrets, and revok-
ing access tokens. As not all owners would reply and inform
us about their actions, we developed our monitoring system
tracking the implementation of these security measures to
understand how organizations mitigate the problem. It would
be expected that all three of these measures are applied.

65 out of 160 instances (40.62%) resulted in no actions
being taken. This indicates a significant gap in addressing
the disclosed security issues. We remark that these numbers
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TABLE 13: Security Measures Taken by Owners after Re-
sponsible Disclosure

Restrict Bucket Restrict File Revoke token Count

✓ ✓ ✓ 19
✗ ✓ ✓ 18
✗ ✗ ✓ 33
✗ ✓ ✗ 19
✓ ✓ ✗ 6
✓ ✗ ✗ 0

are better than the results observed in other responsible
disclosure studies [38], [39], [40], [41], [42]16. For instance,
Maass et al. [40] observed that in their study of notifi-
cations about privacy misconfiguration, across all groups
representing different means of communication, the average
survival rate is 58.8%. Interestingly, in their study, notifi-
cations through the email channel had lower effectiveness,
with the survival rate constituting 66.3%. In our work, the
survival rate is lower (40.62%), suggesting that the choice
of involving a reputable CSIRT.global organization in
the notification process was right [38], [39], [43].

95 out of 160 (59.37%) cases have resulted in actions
upon notification. Table 13 provides insights into how bucket
owners acted upon our responsible disclosure. It shows
that different combinations of the three primary security
measures were actually applied. Among those, 19 (11.88%)
instances saw the implementation of all three measures,
showcasing a comprehensive approach to mitigating risks
and protecting sensitive information. Another 18 (11.25%)
cases involved restricting access to the files with secrets and
revoking tokens but not restricting access to the buckets,
which still leaves a security gap of potential data leakage.
Similarly, in 33 (20.62%) cases, only access tokens were
revoked, leaving buckets and files potentially exposed.

There were 19 (11.87%) cases where only file restric-
tions were applied, and in 6 (3.75%) cases, both buckets
and files were restricted without revoking tokens. This is
clearly insufficient without additional measures, especially
if an attacker has already got access to the content of the
file. Notably, there were no cases where only the bucket was
restricted without additional measures on files or tokens,
suggesting that when bucket restrictions were considered,
other steps were also taken to secure the data.

We should remark that organizations might respond by
restricting access to the exposed files or the entire bucket
rather than revoking the exposed keys because these keys
can be embedded across multiple production systems, mak-
ing their immediate revocation complex and risky. Revoking
such keys without a thorough understanding of all their de-
pendencies can disrupt critical business operations, causing
service outages and operational downtime. Consequently,
organizations might opt for quick fixes like access restric-
tions to prevent further leaks while avoiding the operational
risk and disruption that comes with immediate key rotation.
Addressing the deeper issue of key leakage requires a more

16. However, it is not fully fair to directly compare with these studies,
because they examined different systems.
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Figure 7: Properties of the files with leaks (for all 215
discovered leaks).

extensive and careful process, involving tracking all uses of
the keys and systematically updating or replacing them to
maintain continuous system functionality. We keep monitor-
ing if eventually these secrets will be rotated.

Table 13 underscores the variability in responses to
security disclosures. This likely reflects the maturity of the
security team. The best approach is to restrict access to the
bucket and the files as well as revoke the credentials that
have been leaked. It would also be beneficial to investigate
internally whether these credentials have been previously
misused. However, our external monitoring system is not
able to detect this mitigation.

Figure 7 illustrates the distribution of secret leaks over
several years, highlighting their last modification timeline
from 2014 to 2024. It shows that both fixed and unfixed
leaks originate in files that were last modified throughout
this period, indicating that exposed secrets remain accessible
to attackers for extended periods. We can also see that many
fixed secrets were in very old files, indicating that they were
used in an active cloud infrastructure. The longer a secret
remains exposed, the higher the risk of it being accessed and
exploited by malicious actors. This emphasizes the critical
need for timely identification and remediation of such leaks.

5.2.2. Incident Response Speed. The statistics in Figure 8
illustrate a wide variation in how organizations respond to
responsible disclosures of security issues, particularly in
terms of communication and speed of resolution. This figure
shows only organizations that acted upon our notification.
As of September 15, 2024 (after 5 months of monitoring),
95 cases were fixed in total. We see that some organizations
acted swiftly, with 26 (16.25%) instances of issues being
addressed in less than a day. Interestingly, for these quickly
fixed issues, in 11 (6.88% of the total) cases, the notified or-
ganizations also informed the disclosers about their actions,
showing a high level of responsiveness and transparency.
However, many organizations do not communicate their
actions, even when they fix issues promptly, as evidenced by
15 (9.38%) fixes without notification in less than a day. A
day after the notification, 28 (17.5%) more cases were fixed,
however, the communication dropped considerably, related
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Figure 8: Incident response speed for organizations that took
action to fix the issue. We count separately organizations that
reacted or not to our notification email.

to only 2 issues. Thus, 33.75% cases were fixed within one
day after the notification. As the time to fix issues increases,
the number of reactions and communications drops sharply,
with minimal responses and few fixes recorded beyond two
days. Still, the issues were remediated even long after the
notification: between 20 days and the end of the monitoring
period, another 28 (17.5%) cases were fixed. In total, 20
organizations replied to the disclosers in the study period.

Notably, the majority of organizations fail to maintain
communication with the disclosers, leading to uncertainty
about whether and how the issues have been addressed.
This inconsistency highlights the need for more standard-
ized and timely responses, ensuring both swift resolution
and transparent communication to better manage security
vulnerabilities, as underscored by, for example, the NIS2
Directive in the European Union17.

5.3. Vulnerable Organizations

Based on the collected contact details for responsible
disclosure, we can make an overview of the vulnerable
organizations that we reported to. First, Table 14 represents
the amount of reported issues by country. Notably, the US
is the most prevalent case, significantly higher than other
countries, which may reflect the larger number of cloud
service users and organizations in the US. In total, 160 issues
were reported, highlighting the widespread nature of secret
leaks across the globe. The geographical spread of the issues
underscores that this is not confined to any one region but is
a pervasive challenge for cloud users worldwide. Overall, the
table paints a picture of how misconfigured cloud buckets
and the resulting secret leaks are a global issue, affecting
countries with diverse levels of technological development
and cloud service usage.

Table 15 shows the reported issues by industry sector.
For the categories in this table, we used the classification

17. https://eur-lex.europa.eu/eli/dir/2022/2555

TABLE 14: Reported Issues per Country

Countries Count per
Country

US 52
IN 13
AU, GB 10
BR 9
KR 7
FR, IT, SG, TW, VN 4
CA, AE, GB-SCT 3
CN, CO, DK, IL, NL, ES, CH 2
BE, KY, CL, CG, EC, DE, ID, JP, MY, PK, PH, PL, SK, ZA,
LK, SE

1

Total 160

TABLE 15: Reported Issues by Sector

Sector Count

Computer and Information Technology 81
Retail Stores, Wholesale, and E-commerce Sites 18
Finance and Insurance 12
Education and Research 11
Media, Publishing, and Broadcasting 8
Health Care Services 7
Government and Public Administration 6
Personal 5
Construction and Real Estate 4
Museums, Libraries, and Entertainment 4
Building Security Materials 1
Manufacturing 1
Community Groups and Nonprofits 1
Travel and Accommodation 1

according to the North American Industry Classification
System (NAICSlite)18, developed to classify Autonomous
Systems [44]. The table sheds light on the prevalence of
such incidents, with Computer and Information Technology
emerging as the sector with the highest number of reported
issues. This sector encompasses a wide array of companies,
including software development firms, AI companies, and
SaaS providers, all of which rely heavily on cloud infras-
tructure to store and manage vast amounts of data.

However, it is essential to recognize that the risk of data
leaks extends beyond the tech sector alone. Other sectors,
such as Finance, Healthcare, Government, and Academia,
were also found to be vulnerable to these issues during
our research. Moreover, these organizations vary widely in
terms of size, from small startups to multinational corpo-
rations with extensive resources and security teams. Yet,
regardless of their scale or industry, they all face similar
challenges when it comes to securing their cloud infrastruc-
ture effectively. Indeed, the interconnected nature of cloud
environments means that this type of data leak in one orga-
nization’s cloud bucket can have far-reaching consequences.
Data breaches can cascade across supply chains, impacting
partners, customers, and stakeholders19. In Section 6, we
report on several illustrative case studies concerning the
secret leaks we have discovered.

18. https://asdb.stanford.edu/
19. https://github.com/nagwww/s3-leaks
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6. Case Studies

We now examine several particularly interesting cases
found during this study. These examples illustrate that secret
leaks in the cloud-hosted infrastructure can have a poten-
tially disastrous impact on organizations and their security.

CrowdStrike’s Falcon Platform. One of the most impactful
discoveries in our study is an API20 token securing access
to the organization’s Falcon Platform21 configuration panel.
The Falcon Platform, developed and provided by the se-
curity service provider CrowdStrike22, is a suite of security
solutions designed to ensure the protection of organization’s
IT resources. These solutions are employed by security
teams for threat detection (e.g., identity threat detection),
incident response (e.g., sandboxes or a Security Information
and Event Management platform), and endpoint protection
(e.g., Endpoint Detection and Response, firewall, forensic
data collector). The found API token provided access to
the configuration panel of all security solutions and could
be used by a malicious actor to circumvent completely the
security protection of the organization. For instance, using
this token it would be possible to modify threat detection
and firewall rules, add or delete user accounts and manage
their privileges, change response policies, add detection
exceptions, etc. Thus, an attacker having this token would
be able to gain complete control over resources and easily
avoid being detected. Both parties took immediate action
to address the leak within one day by deleting the file in
question and revoking the keys, which was confirmed by
the CrowdStrike analyst who handled the case.

AWS Credentials Exposing 230 Buckets. In another case,
we discovered AWS credentials in a bucket belonging to
the government sector. These credentials facilitated seamless
access to various AWS services and resources, empowering
efficient data management, infrastructure deployment, and
security enforcement across the organization’s cloud envi-
ronment. They allowed one to authenticate, obtain temporary
security credentials, retrieve account information, and access
DynamoDB databases and S3 bucket data.

Within the scope of our study, we discovered that these
credentials secured access to the data in a vast array of
S3 buckets, totaling 230 in number. From the metadata
information, it became clear that these buckets contain a
variety of data, each serving different purposes. For in-
stance, there were multiple buckets likely holding logs and
event data, while other buckets possibly contained financial
information or IT infrastructure data related to financial
systems. Additionally, some buckets were used for backups.
Furthermore, there were buckets indicating their usage for
deploying infrastructure using Terraform23. Overall, to an
adversary, access to these buckets would provide insights
into the organization’s operations, data management prac-

20. https://www.falconpy.io/Home.html
21. https://www.crowdstrike.com/falcon-platform/
22. https://www.crowdstrike.com/
23. https://www.terraform.io/

tices, infrastructure deployment strategies, as well as critical
and confidential data related to the organization.

This case is also interesting because it confirms the
correctness of our choice for prolonged monitoring. The
issue was reported on April 15, 2024. The next day, April
16, 2024, the owner admitted it and partially resolved it by
restricting access to the file containing the credentials. How-
ever, on April 22, 2024, our monitoring system discovered
it being live again. We can assume that some organization’s
systems or applications deploy the file automatically with
the wrong permissions. The issue was reported to the owner
again. As of May 24, 2024, the issue was partly fixed again
by restricting the file and not revoking the credentials.

AWS SES SMTP. Amazon Simple Email Service (SES)24

is a cloud-based Simple Mail Transfer Protocol (SMTP)
service provided by Amazon. It provides facilities to send
emails and manage all SMTP-related issues such as authenti-
cation, bounce and complaint handling, and measuring email
campaigns. During this study, we discovered 13 valid SMTP
SES sets of credentials. All these credentials could be used
to send emails on behalf of the corresponding organizations.
This can be exploited for various malicious purposes, mainly
to spread phishing and spam messages. However, they can
also be used for Business Email Compromise (BEC) attacks
or to distribute malicious files, which might result in the
sender being blocklisted.

Interestingly, during the responsible disclosure process,
one organization has requested the CSIRT.global team
to prove that the credentials indeed can be used to send
emails on behalf of the security team account. After veri-
fying that the security team indeed controls this account, a
benign demonstration of the attack, consisting in sending a
test email on behalf of the organization’s security team, was
carried out. As the result of the responsible disclosure, 12
out of the 13 reported AWS SES SMTP leaks were fixed
by revoking the credentials.

7. Ethical Considerations

Ethical considerations are paramount for this research,
as we are dealing with sensitive data (credentials) that can
be used to do harm and create substantial damage not only
to the owners but also to third parties (e.g., via sending
phishing messages). Our study design has been reviewed and
approved by the Ethics Review Committee of the Science
Faculty at Leiden University (The Netherlands)25.

There are several important ethical considerations that
we took into account when designing and executing this
research, trying to understand all possible negative con-
sequences from our work, and minimize them or balance
them against the benefits. First, in order to locate leaked
credentials, we downloaded and scanned third-party files. To
secure this process, we set up a dedicated secure infrastruc-
ture, and the downloaded data has been stored encrypted,
with only the first author having access to them. After

24. https://aws.amazon.com/ses/
25. Ref. numbers 2023–024 and 2024–005.
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finishing the research process, the data are deleted. We
responsibly disclosed the leaked secrets to the owners or
the platform providers (as Section 5 details). To reach the
owners directly, we have examined some publicly available
information in buckets and relied additionally on OSINT,
whenever possible. As mentioned in Section 3 and Section 5,
reporting to the owners is more effective as it ensures
faster issue mitigation. This is recommended as the most
effective by previous research on large-scale vulnerability
disclosure [38], [39]. These considerations, in our opinion,
balance the potential negative impact of looking for owner
details in the leaking files and using OSINT techniques, such
as LinkedIn search.

Second, to ensure that the leaks are exploitable, we have
validated them automatically. To minimize the impact of this
process, we selected only the secrets that can be validated in
a non-intrusive way (this is discussed in Section 3). Secret
validation has been explored in previous studies, e.g. [12],
[34] sought to validate access tokens by exploiting the dif-
ference in transaction outcomes. Our approach is similar, as
we are automatically processing the results of the interaction
with a remote system (i.e., the status codes), and we are not
exploring the obtained privileges further than that.

Finally, our research used data provided by GrayhatWar-
fare, a platform whose provenance cannot be established, but
which was previously used in other research, e.g., [18], [19],
[45]. To scale up the data processing using their API, we
acquired a license. This is a potential ethical concern. How-
ever, we have extensively reviewed all publicly available
information about this platform, and we did not find reasons
to believe that there is a criminal organization behind this
data source.

Specifically, before starting the research, we investigated
the reputation of this platform and whether there are any
known cybercriminal connections behind it. Furthermore,
we have not encountered any complaints or negative feed-
back about this source from security researchers or the
public. Importantly, this platform is a legally registered
company in Europe.

Furthermore, the platform indicates on its website that
its purpose is to raise awareness about the misconfigured
bucket issues26, as such open buckets often leak confidential
or private data. The platform invites all bucket owners to
contact them if they observe that their data ended up listed,
and we have observed that they do act on reports and remove
data. We also have sent them an inquiry email regarding
their data collection process. They explained that they follow
URLs, analyze content, and extract any publicly accessible
bucket links.

To summarize, we investigated this data source prior to
deciding to use it for our research and acquiring the license.
Our considerations were reported to the Ethics Review Com-
mittee, which reviewed our study design and approved it. We
note that our study has led to many organizations securing
their cloud storage infrastructure; thus, it was beneficial to
society.

26. https://buckets.grayhatwarfare.com/top keywords

Still, like any other responsible vulnerability research
and disclosure, we acknowledge that we cannot remove all
possible harms altogether. A malicious actor can repeat the
same process and potentially discover secret leaks and other
opportunities to do harm. We believe that the benefits of this
research, the responsible disclosure, and the awareness this
work creates, overall, outweigh the possible harms.

8. Discussion and Limitations

Discussion. Our study has confirmed that very dangerous
and potentially impactful secret leaks occur via miscon-
figured cloud infrastructures, affecting organizations from
diverse sectors and countries. We therefore believe that our
study significantly contributes to public benefit by helping
organizations to recognize important security issues and fix
them. Moreover, we bring additional attention to this prob-
lem, which may drive the development and implementation
of the standards and best practices for all cloud providers.

There are already initial steps in this direction that can
potentially mitigate the issue. For instance, starting from
April 2023, Amazon blocked the default public access to
S3 buckets27. Our research confirms that this measure is
likely insufficient, as a lot of buckets with private informa-
tion are still publicly available. Moreover, in June 2024,
Google plans by default to disable access to the com-
promised Google Cloud keys discovered by all means28.
This policy may reduce the potential harm of keys being
exposed for a considerable amount of time. For instance,
in our study, we used the Grayhat snapshot data collected
as of January 19, 2024. Due to the vast amount of data
to analyze, we managed to finish our research process and
start the notification campaign only on April 15, 2024.
This shows that the discovered leaked secrets were publicly
available for a period of at least 3 months. Given the speed
with which the attackers discover and access misconfigured
buckets as reported by the honeybuckets study [20], this
gives a considerable advantage to adversaries. Thus, raising
awareness and supporting organizations and cloud providers
in implementing best practices is crucially important.

Preventing Secret Exposure in the Cloud. Secret leaks
can pose significant security risks, potentially leading to new
attacks and lateral movements in cloud environments2930. To
mitigate these risks, organizations should implement a multi-
layered approach focused on secure data and credential man-
agement. First, they need to employ robust access controls
and encryption for all storage buckets, ensuring that only au-
thorized personnel can access sensitive files. Least privilege
principles should be robustly implemented across all cloud

27. https://aws.amazon.com/blogs/aws/heads-up-amazon-s3-security-
changes-are-coming-in-april-of-2023/

28. https://cloud.google.com/resource-manager/docs/organization-
policy/restricting-service-accounts#disable-exposed-keys

29. https://unit42.paloaltonetworks.com/large-scale-cloud-extortion-
operation/

30. https://www.paloaltonetworks.com/blog/security-operations/
playbook-of-the-week-cloud-token-theft-response/
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resources and services. Second, organizations should utilize
secret management systems,e.g., AWS Secrets Manager31, to
store and retrieve sensitive information dynamically, rather
than hard-coding it in configuration files. They should also
implement automated scanning tools to detect and flag po-
tential secret leaks in code repositories and cloud storage.

Additionally, enforcing strict version control practices,
including git-secrets32 or similar tools, helps to prevent
accidental commits of sensitive data. Credentials should
be temporary and rotated regularly, scoped access tokens
must be used where possible. Finally, organizations should
conduct regular security audits and penetration testing to
identify and address any vulnerabilities in the cloud infras-
tructure. By combining these strategies, organizations can
significantly reduce the risk of secret leaks and their poten-
tial for enabling unauthorized access or lateral movement
within cloud environments.

If an organization has discovered that a secret has leaked,
it is advised, as mentioned in Section 5.2.1, to revoke it and
disable access to the corresponding files and cloud storage
buckets. It is recommended that the organization then tightly
monitors the corresponding infrastructure, performing de-
tailed log analysis and resource usage metering. Finally, it
must be assumed that all data in the corresponding bucket
has leaked, and based on this assumption, the organization
must perform the impact assessment and remediate as many
consequences as possible.

Limitations. We acknowledge that our study has certain
limitations. First, our work focuses on the sample collected
by the Grayhat platform, which might not be representative
of the whole set of publicly available cloud buckets. How-
ever, this sample is substantial enough and we were able
to find serious secret leaks within it. Second, our work has
important ethical considerations. We have tried to conduct
our research in an ethical and responsible way, minimizing
the possible harm as much as possible and balancing the
potential harm against the benefits to society and the affected
organizations. Our study has been reviewed and approved by
our institutional Ethics Review Committee.

We note that 40.63% of the reported instances resulted
in no actions being taken by the owners. There might be
several reasons behind this. One possible reason is the
disclosure process itself: there might be a lack of trust
in the disclosing email or a spam filter precluding the
delivery of the notification, as reported by previous studies
on the effectiveness of responsible disclosure [40], [42],
[46]. Some buckets might have been abandoned due to
staff rotation or business closure. Moreover, there might
be some honeybuckets [20] and honeytokens [47], [48] in
our sample. Yet, previously Cable et al. [18] reported that
in their studied sample of misconfigured buckets, 46% of
owners did not notice exploitation of their cloud storage.
Overall, our responsible disclosure success rate is in line
with the previous studies examining the effectiveness of
vulnerability disclosure via email [38], [39], [41], and we

31. https://aws.amazon.com/secrets-manager/
32. https://github.com/awslabs/git-secrets

have not received any negative reaction to the disclosed
issues.

Our analysis and responsible disclosure only covered the
validated secrets. This is why our results do not include
false positives (besides potential honeybuckets [20] data),
which have been identified in other relevant studies [1], [7],
[35], [36]. This decision is partially driven by our partner
CSIRT.global, which prioritizes notifying organizations
about real incidents. However, as our research only focused
on a limited amount of secret types and a limited amount of
file extensions of interest, our process has likely resulted
in false negatives, indicating that the actual scale of the
problem might be much larger in reality. Still, we believe our
automated approach achieves a good balance of scalability,
non-intrusiveness, and reliability of the results. Our results
highlight the importance of the secret leak problem in
misconfigured cloud systems. Future studies can expand on
our results, looking into other file types and other relevant
security issues.

9. Related Work

Secret leakage detection is an active area of research,
with many approaches proposed for improved secret de-
tection [22], [33], [35], [49], [50], [51], [52], and studies
comparing the performance of such approaches [36]. Re-
searchers also conducted measurement studies to evaluate
the prevalence of credential leaks on different platforms,
such as GitHub [4], [7], [8], [9], [10], [28], [30] and large
language models trained on code sharing platforms [31],
[53], mobile applications and mini programs [11], [12], [34],
[54], [55], Docker containers [1], virtual server images [13],
[14], and FTP servers [56]. At the same time, some studies
focused on developers and their perceptions and needs when
dealing with protecting secrets [57], [58], [59]. As men-
tioned in Section 3, we studied this literature on detecting
secret leaks on different platforms and examined the shared
regexes as our starting point. However, these works did not
analyze detecting secrets in cloud systems, which is the
focus of our study.

Leaks in Cloud Infrastructures. Most closely related to
our research are studies of vulnerable cloud infrastructures
and data leaks in such systems. Continella et al. [19] scanned
and assessed more than 240 k S3 buckets, discovering that
11% of them were publicly accessible. They did not scan for
secrets leaked within files but reported on several discovered
examples of sensitive key material leakage identified by file
extension. Subsequently, Cable et al. [18] developed Stato-
sphere: a bucket name-guessing system to discover public
buckets exposed to the internet. In their study, 173 k gener-
ated names corresponded to publicly accessible buckets. An
estimated 10.6% of these public buckets exposed sensitive
data, ranging from SQL database dumps to backups, and
including 14.4 k private keys. However, this study did not
delve into the different types of secret leaks in the exposed
buckets, besides reporting on 10 case studies showcasing
substantial data leaks discovered. Izhikevich et al. [20]
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experimented with honeybuckets, i.e., buckets intentionally
made vulnerable and accessible to attackers. They found that
attackers discover open buckets often within hours and that
the confidentiality and integrity of data hosted in the buckets
are at risk. This underscores the importance of our research.

Our work differs from the studies in this area in the
following ways. Our research presents a comprehensive
analysis of cloud storage security across four major cloud
providers AWS, Azure, Google Cloud, and DigitalOcean,
while the closest work to us focused only on AWS [19] and
AWS, Google Cloud and Alibaba [18]. By comprehensively
analyzing the GrayhatWarfare dataset, our study is also the
first one, to the best of our knowledge, that systematically
evaluates secret leaks in misconfigured cloud storage. While
Continella et al. [19] and Cable et al. [18] report some leaks
through this channel, a systematic evaluation of this attack
vector has never been done before.

Secret Validation Methods. As mentioned, it is not enough
to detect a secret being leaked, because it might be revoked
or used for testing. TruffleHog implements a pipeline for
secret validation for diverse platforms, and they rely on
interacting with the target APIs in a limited way, e.g., issuing
a GET request [60]. GitHub’s Secret Scanner also performs
token validation for GitHub secrets [61] and, since October
2023, for the major cloud services with Amazon, Microsoft,
Google, and Slack [62].

The studies by Wang et al. [34] and Zuo et al. [12]
relied on differences in error manifestations to understand
whether the tested credential is valid. This process is semi-
automated, as it requires first extensively exploring the cloud
APIs to be able to infer cases when the access control state
can be captured in a non-intrusive way. As an alternative
approach, Basak et al. [32] have manually inspected secrets
collected in the SecretBench dataset in their context, and
have relied on human expert opinions of the authors and
project developers to label secrets as valid or not.

Our own work builds on the validation methods shared
in the popular repositories Keyhacks, all-about-apikey, and
Noseyparker, but we had to extensively test and redevelop
their validation scripts to guarantee non-intrusiveness and
absence of bugs. We also developed our own validation
scripts for the new regexes we created.

Outcomes of Responsible Disclosure. The effectiveness
and feasibility of responsible vulnerability disclosure and
abuse reporting have been widely studied in the litera-
ture [37], [38], [39], [40], [41], [42], [43], [46], [63], [64],
[65], [66], [67], [68], [69], [70], [71]. For example, Stock
et al. [38], [42] and Li et al. [39] examined the feasibility
and effectiveness of large-scale vulnerability notifications to
owners (direct) and intermediaries and trusted third parties
such as CERTs (indirect). They found the direct reporting
to the owners to be the most effective, yet the overall
remediation rates were much lower than 100%. Similarly,
van Hove et al. [41] studied responses to a coordinated email
vulnerability disclosure. They found that many organizations
were difficult to reach for disclosure, and the reaction and
fixing rate was lower than 50%. Our results of the re-

sponsible disclosure outcomes are similar to the findings
from the literature, as we also observed the remediation
levels being far from 100%, and underline the challenges
related to the lack of established vulnerability disclosure
channels. However, we have achieved a response rate of
59% that is higher than in most of the studies, underlining
the effectiveness of disclosures via a trusted third party.

Our study investigated the responsible disclosure pro-
cess outcomes when done via a reputable third party
(CSIRT.global) and for specific vulnerabilities (cloud
data leaks). The responsible disclosure outcomes for this
vulnerability, to the best of our knowledge, have not been
examined before. Another new result of our study is its
comprehensive analysis of organizational responsiveness to
security notifications. By monitoring responses over an ex-
tended period (5 months) and categorizing them based on
both timing and communication, we gained insights into
how organizations handle and prioritize security vulnerabil-
ities. This examination of response patterns – from swift
actions within a day to long-term fixes occurring weeks
after notification, and from a comprehensive to only partial
mitigation – offers valuable data for understanding and po-
tentially improving the disclosure and remediation processes
in cybersecurity.

10. Conclusion

Our empirical study has discovered that, unsurprisingly,
secret leaks with potentially huge impact exist in miscon-
figured cloud buckets. By performing large-scale analysis
of files exposed in vulnerable buckets accessible via the
GrayhatWarfare platform, we were able to automatically
and non-intrusively discover 215 valid secret leaks. These
leaked secrets belong to a variety of organizations from
different sectors, sizes and countries, emphasizing that the
issue of misconfigured buckets and development pipeline
errors can affect any company. The case study examples
we examined show that the impact of leaking these secrets
can be immense, ranging from full control of organizations’
security infrastructure to impersonation and infiltration into
protected cloud infrastructure.

We have responsibly disclosed the discovered secret
leaks to the bucket owners, whenever it was possible to dis-
cover the organization behind the bucket in a non-intrusive
way, and to the cloud providers when this was not feasible.
The outcomes of our responsible disclosure show that 59%
of the owners fixed the issue at least partially, thereby under-
scoring that such secret leaks are largely not intentional but
indeed results of security misconfigurations. Future research
should look into other types of files and data leaks exposed
in the buckets, whenever the issues can be reliably identified
in a non-intrusive way.
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Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

Summary

This paper systemically discovers numerous instances
of keys and credentials in publicly accessible cloud storage
buckets. The paper performs a comprehensive analysis of
this sensitive data, and evaluates the outcomes of responsibly
disclosing these findings to the data owners.

Scientific Contributions

• Provides a new data set for public use.
• Creates a new tool to enable future science.
• Identifies an impactful vulnerability.
• Provides a valuable step forward in an established field.

Reasons for Acceptance

1) The paper develops an automated system for scanning
files in misconfigured cloud buckets to detect secret
leaks.

2) The paper conducts a large-scale analysis of pub-
licly accessible cloud buckets, identifying numerous
instances of secret leaks.

3) The paper validates the exposed secrets using non-
intrusive techniques.

4) The paper demonstrates that secret leaks in misconfig-
ured cloud buckets occur across diverse organizations
and cloud providers.

5) The paper provides case studies that highlight potential
real-world impacts of secret leaks.

6) The paper evaluates the effectiveness of responsible
disclosure by tracking the data owners’ response.

Noteworthy Concerns

1) The paper analyzes a single snapshot of misconfigured
cloud buckets, rather than a longitudinal data set. As
such, the paper does not capture potential changes in
cloud bucket security practices over time.
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